Images from Shimwell+ 2019

Cosmological Studies with the LOFAR Two-metre Sky Surveys

200 400 600 800 1000 1200 1400 1600 Ω Source Density per sq. deg

> Catherine Hale *University of Oxford*

*On behalf of members in the LOFAR Surveys Cosmology Team**

TRUST.

THE UNIVERSITY of EDINBURGE **LEVERHULME**

> UNIVERSITY OF OXFORD

**Notably: S. Nakoneczny, L. Böhme, J. Zheng, M. Pashapour-*

Ahmadabadi

Overview

- Tracing Large Scale Structure with galaxy surveys
- LOFAR surveys: Systematics and observational biases
- Cosmology with LoTSS-DR2:
	- Angular Clustering (*Hale et. al 2024*)
	- One-Point statistics (Pashapour-Ahmadabadi et al. in prep)
	- Cosmic Dipole (Böhme et al. in prep)
	- Cross-Correlation with CMB (Nakoneczny et al. 2024) and eBOSS (Zheng et al. in prep)
	- Flux dependent Clustering (Bhardwaj+ in press)
- Bias evolution of AGN and SFGs in the LOFAR Deep Fields
	- *Hale et al. in prep*
- Future for cosmology studies with LOFAR

Tracing Large Scale Structure with galaxy surveys

Credit: ESO/M. Kornmesser

Tracing Large Scale Structure with galaxy surveys

Large **spectroscopic surveys** provide an **excellent opportunity** to trace the **large-scale structure** of the Universe

See e.g. 2dFGS (Colless+ 2001), SDSS (York+ 2000), GAMA (Driver+ 2011)

Using accurate redshifts allows **precise observation** of the **location** of galaxies and to **observe clusters, filaments and voids**

One way to quantify the large-scale structure is by tracing **how clustered** galaxies appear in the survey at **different scales** compared to if there was no large-scale structure

This can be quantified by the **two-point correlation function** *See e.g. Hauser & Peebles 1980, Peebles+ 1980, Davis & Peebles 1983*

Tracing Large Scale Structure with galaxy surveys

- Galaxies form in **dark matter haloes** and are "**biased**" tracers of the underlying matter (Kaiser+ 1984)
- Can quantify **galaxy bias** by looking at **two-point correlation function** of galaxies and compare to that for the **underlying matter**

Galaxy bias,
$$
b_g
$$
 = $\frac{\delta_g}{\delta_M}$
Ratio of mean mass density of galaxies c.f.
underlying dark matter field

$$
= \sqrt{\frac{\xi_g}{\xi_M}}
$$

Relates to spatial clustering of galaxies

But radio continuum surveys can't provide redshifts, so we typically rely on photometric redshifts from multiwavelength catalogues and measure the angular clustering

Angular Clustering

Angular Clustering

To calculate this we use:

$$
\omega(\theta) = \frac{DD(\theta) + RR(\theta) - 2DR(\theta)}{RR(\theta)}
$$

Landy & Szalay 1993

Normalised pairs of galaxies in the data (randoms or data-to-randoms) in an angular separation

To link angular clustering to galaxy bias we need to know redshift distribution and can use this to de-project the clustering.

Angular Clustering

To calculate this we use:

$$
\omega(\theta) = \frac{DD(\theta) + RR(\theta) - 2DR(\theta)}{RR(\theta)}
$$

Landy & Szalay 1993

Normalised pairs of galaxies in the data (randoms or data-to-randoms) in an angular separation

To link angular clustering to galaxy bias we need to know redshift distribution and can use this to de-project the clustering.

Creating accurate random catalogues are crucial to this work!

LOFAR Two-metre Sky Survey (LoTSS) Wide Area

Systematics to Account For

Take **simulated** catalogues of radio sources and account for:

Use comparisons with **FIRST** (Helfand+ 2015) to account for **smearing** in the sources as a function of **elevation**

Systematics to Account For

Take **simulated** catalogues of radio sources and account for:

Use comparisons with **FIRST** (Helfand+ 2015) to account for **smearing** in the sources as a function of **elevation**

Use **simulations** from **Shimwell+ 2022** to investigate:

- **Incompleteness** (as a function of SNR)

- Differences between **simulated** and **measured** flux densities

Generation of Randoms

1) **Simulated** radio source

- Integrated and peak **flux density** from Wilman+ 2008
- Assign **random position** in the DR2 area
- Obtain **rms** from **map**

Generation of Randoms

1) **Simulated** radio source

- Integrated and peak **flux density** from Wilman+ 2008
- Assign **random position** in the DR2 area
- Obtain **rms** from **map**

2) Apply **systematics**

- Use **smearing** vs **elevation** to determine the peak flux density of the source
- Use this to obtain a **SNR** of the source
- Measure the **completeness** and sample to determine if the source is **detected**
- For detected sources determine the **measured** integrated and peak **flux densities**

Generation of Randoms

1) **Simulated** radio source

- Integrated and peak **flux density** from Wilman+ 2008
- Assign **random position** in the DR2 area
- Obtain **rms** from **map**

2) Apply **systematics**

- Use **smearing** vs **elevation** to determine the peak flux density of the source
- Use this to obtain a **SNR** of the source
- Measure the **completeness** and sample to determine if the source is **detected**
- For detected sources determine the **measured** integrated and peak **flux densities**

3) Apply **additional** cuts

• Apply additional **SNR** and flux density cuts on the **measured properties** and the data

Simulated Random Catalogues

Dotted lines = Random sources uniformly distributed (i.e. not accounting for systematics)

Solid lines = Random sources accounting for systematics

Flux Density Scale

Cosmology Studies with LoTSS-DR2

 $≥ 1.5$ mJy, $≥ 7.5\sigma$

 $≥ 1.5$ mJy, $≥ 7.5\sigma$

At the smallest angular scales there is an uptick in the angular two-point correlation function

This likely has a significant contribution from multi-component radio sources.

The value-added catalogue (Hardcastle+ 2023, i.e. with cross-matched multicomponent sources) is for >8 mJy sources.

Therefore, cannot fit below ~0.03 degree.

+ Use Redshift Distributions to model the clustering and infer galaxy bias using PyCCL (Chisari+ 2019)

 $≥ 1.5$ mJy, $≥ 7.5\sigma$

Redshift Distribution of Sources

Redshift Distribution of Sources

Deep Fields data have **Z_Best** values in the catalogues but can have **wide ranging p(z)** distribution.

Therefore, we create **resampled** full $p(z)$ by random sampling from the p(z) of the sources in the three fields which are above the flux limit being considered.

We **repeat** this numerous times and use the spread in the p(z) to give **uncertainties** to the p(z).

catherine.hale@physics.ox.ac.uk LOFAR Family Meeting, Leiden 2024 Hale+ 2024

Work in progress

See Morteza's poster in the coffee/lunch breaks!

One-point statistics (Pashapour-Ahmadabadi et al. in prep)

Use the counts of radio sources in cells to investigate the distribution of sources and see it is not well modelled by a Poisson process alone.

Can use counts in cell to estimate the angular clustering, assuming a power law

 $S > 2$ mJy, mask d, N = 827 362 $10⁰$ -0.91 $0.14 -$ LoTSS-DR2 -0.91 -0.91 Randoms 3.66 $0.12¹$ 10^{-1} Poisson -3.66 -3.66 compound Poisson > 2 mlv. 7.5 SNR $0.10¹$ negative binomial 10^{-2} $|\omega(\theta)|$) $\mathsf{E}^{0.08}$ -0.81 10^{-3} -0.85 $0.06 -0.90$ -0.9 $0.04 -1.01$ 10^{-4} $-1₀$ $0.02 -1.1$ -2.65 -2.55 -2.50 -2.60 $log_{10}A$ 10^{-5} 0.00 $\frac{1}{10^{-1}}$ 10^{0} 10^{-2} 10^{1} $10²$ $\overline{40}$ 10 $\overline{20}$ $\overline{30}$ Ω θ [deg] Source per cell

Work in progress

Radio Dipole (Böhme+ in prep)

Cross-Correlation with CMB (Nakoneczny+ 2024)

- Combine LoTSS-DR2 with **CMB lensing maps** from Planck (Planck Collaboration+ 2020) to measure **power spectrum**
- Use this to place constraints on **bias evolution models** by using cross correlations helping to avoid any potential remaining systematics in the radio data.
- By fixing certain parameters, was also able to place constraints on $\sigma_{\rm B}$

Cross-correlating with eBOSS (Zheng+ in prep)

(Represents how the BAO wiggles in the power spectrum shift with scale)

Cross-correlate **luminous red galaxies** from **eBOSS** (Ross+ 2020) with LoTSS-DR2 in different eBOSS redshift bins

Use this to put constraint on the **angular BAO parameter** ass **bias evolution**

Using cross-correlations helps **reduce systematics** in both fields and improve constraints on cosmological parameters

Jinglan presented this earlier in the week!

Flux Dependent Clustering (Bhardwaj+ in press)

Investigate the flux dependent clustering of LoTSS DR1 using the cosmological analysis of Siewert+ 2020.

Using the method to obtain redshift distributions from resampling the p(z) this can see how spatial clustering models varies with flux density

Limitations in bias constraints from LoTSS-DR2

Limitations in bias constraints from LoTSS-DR2

The study into the angular clustering relies on a number of assumptions:

1) The bias evolves using one of the two models considered

2) The SFGs and AGN have similar bias evolution over time

Limitations in bias constraints from LoTSS-DR2

The study into the angular clustering relies on a number of assumptions:

1) The bias evolves using one of the two models considered

2) The SFGs and AGN have similar bias evolution over time

AGN vs SFG

Hale+ 2018

LOFAR Deep Fields

- Deep (~20-30 uJy/beam) observations over 3 deep fields: ELAIS-N1, Lockman Hole, Boötes (Sabater+ 2021, Tasse+ 2021)
- Source association presented in Kondapally+ 2021
- Redshifts/Stellar masses in Duncan+ 2021
- Source Classifications in Best+ 2023

LOFAR Deep Fields

- Deep (~20-30 uJy/beam) observations over 3 deep fields: ELAIS-N1, Lockman Hole, Boötes (Sabater+ 2021, Tasse+ 2021)
- Source association presented in Kondapally+ 2021
- Redshifts/Stellar masses in Duncan+ 2021
- Source Classifications in Best+ 2023

No small-scale clustering from multi-component sources, only 1-halo

Split source populations and investigate bias evolution

SFG Luminosity Function $0.1 < z < 0.4$ $-$ 1.6 $< z < 2.0$ $0.4 < z < 0.6$ $-2.0 < z < 2.5$ $-2.5 < z < 3.3$ $0.6 < z < 0.8$ $0.8 < z < 1.0$ $-$ 3.3 $< z < 4.6$ $-$ 4.6 $< z \leq 5.7$ $1.0 < z \leq 1.3$ $-$ 1.3 < z \leq 1.6 $\log_{10}(\phi/{\rm Mpc}^{-3}~\log_{10}L^{-1})$ -5 22 24 26 $\log(L_{150\text{MHz}}/\text{W Hz}^{-1})$

SFG Luminosity Function parameter evolution 25.0 $\mathrm{EN}1$ **Bootes** $\begin{array}{ll} & \gamma_{\rm N} \\ \mbox{1.5}\; & \gamma_{\rm N} \\ \mbox{2.5}\; & \gamma_{\rm N} \\ \mbox{2.$ $\begin{array}{l} \log_{10}(\phi_{\star}/{\rm Mpc}^{-3} \ \log L^-) \\ \frac{1}{\omega} \ \omega \ \omega \end{array}$ Lockman Hole $\rm \log_{10}(SFR_\star/M_\odot yr$ All fields -3. 22. 2 \overline{z} \overline{z}

• Use modelling of **LOFAR luminosity function** (LF; Kondapally+ 2022, Cochrane+ 2023) parameters to construct LFs in small z bins (dz = 0.025)

Figures from Cochrane+ 2023

SFG Luminosity Function $0.1 < z < 0.4$ $-$ 1.6 $< z < 2.0$ $0.4 < z < 0.6$ $-2.0 < z < 2.5$ $-2.5 < z < 3.3$ $0.6 < z < 0.8$ $0.8 < z < 1.0$ $-$ 3.3 $< z < 4.6$ $1.0 < z \leq 1.3$ $-4.6 < z \leq 5.7$ $-$ 1.3 < z \leq 1.6 $\log_{10}(\phi/{\rm Mpc}^{-3}~\log_{10}L^{-1})$ -5 22 24 26 $\log(L_{150\text{MHz}}/\text{W Hz}^{-1})$

SFG Luminosity Function parameter evolution 25.0 $\mathrm{EN}1$ **Bootes** $\begin{array}{ll} & \gamma_{\rm N} \\ \mbox{1.5}\; & \gamma_{\rm N} \\ \mbox{2.5}\; & \gamma_{\rm N} \\ \mbox{2.$ $\log_{10}(\phi_\star/\mathrm{Mpc}^{-3}~\log L^-$ Lockman Hole -3 $\rm \log_{10}(SFR_\star/M_\odot y)$ All fields -3. 22. 2 \tilde{z} \overline{z}

- Use modelling of **LOFAR luminosity function** (LF; Kondapally+ 2022, Cochrane+ 2023) parameters to construct LFs in small z bins (dz = 0.025)
- **Down sample** the LF from the input random catalogue so they agree with **the model LF**

Figures from Cochrane+ 2023

SFG Luminosity Function $-$ 1.6 $< z < 2.0$ $0.1 < z < 0.4$ $0.4 \, < z \, < \, 0.6$ $-2.0 < z < 2.5$ $-2.5 < z < 3.3$ $0.6 < z < 0.8$ $0.8 < z < 1.0$ $-$ 3.3 $< z < 4.6$ $1.0 < z < 1.3$ $-$ 4.6 $< z \leq 5.7$ $-$ 1.3 < z \leq 1.6 $\log_{10}(\phi/{\rm Mpc}^{-3}~\log_{10}L^{-1})$ -5 22 24 26 $\log (L_{\rm 150 MHz}/{\rm W~Hz}^{-1})$

Figures from Cochrane+ 2023

SFG Luminosity Function parameter evolution

- Use modelling of **LOFAR luminosity function** (LF; Kondapally+ 2022, Cochrane+ 2023) parameters to construct LFs in small z bins (dz = 0.025)
- **Down sample** the LF from the input random catalogue so they agree with **the model LF**
- **Combine** the z bins together to get randoms over the **full z range** $(dz = 0.2 - 0.5$ depending on source type)

SFG Luminosity Function $0.1 < z < 0.4$ $-$ 1.6 $< z < 2.0$ $0.4 < z < 0.6$ $-2.0 < z < 2.5$ $-2.5 < z < 3.3$ $0.6 < z < 0.8$ $0.8 < z < 1.0$ $-$ 3.3 $< z < 4.6$ $1.0 < z < 1.3$ $-$ 4.6 $< z < 5.7$ $1.3 < z \leq 1.6$ $\log_{10}(\phi/{\rm Mpc}^{-3}~\log_{10}L^{-1})$ -5 22 24 26 $\log (L_{\rm 150MHz}/{\rm W\ Hz}^{-1})$

Figures from Cochrane+ 2023

SFG Luminosity Function parameter evolution

- Use modelling of **LOFAR luminosity function** (LF; Kondapally+ 2022, Cochrane+ 2023) parameters to construct LFs in small z bins (dz = 0.025)
- **Down sample** the LF from the input random catalogue so they agree with **the model LF**
- **Combine** the z bins together to get randoms over the **full z range** (dz = 0.2-0.5 depending on source type)
- Gives **input source distribution** with the **LF, n(z)** and **dN/dS** which matches the intrinsic distribution for the given source type in the z bin

Hale+ in prep

Results

Hale+ in prep

Results

Good agreement between **Hale+ 2018** SFGs and **this work** and Hale+ 2018 LERGs and the QLERGs (which are more similar based on selection function used in Smolčic+ 2017)

Hale+ in prep

Results

Good agreement between **Hale+ 2018** SFGs and **this work** and Hale+ 2018 LERGs and the QLERGs (which are more similar based on selection function used in Smolčic+ 2017)

SFG bias evolution is **steeper** than the **evolving model** assumed for **LoTSS DR2** – but good approximation for LERGs

Future of Cosmological Studies with LOFAR

Future with LOFAR

LOFAR High Resolution

Future with LOFAR

LOFAR High Resolution

LOFAR Follow up Redshift Survey: WEAVE-LOFAR

LOFAR Follow up Redshift Survey: WEAVE-LOFAR

Summary

- Radio Surveys with LOFAR are great for **cosmology** studies:
	- Combination of **large area** observations + **deep fields** with a **wealth of ancillary data**
- **Systematics** are **key** to understand to accurately trace the **large-scale structure**:
	- We use a combination of simulations and account for **systematic effects** e.g. incompleteness, smearing, measurement errors
- Numerous studies of the **evolving bias** in the **LoTSS DR2** wide area survey from the auto-correlation (**Hale+ 2024**) and cross-correlations (**Nakoneczny + 2024, Zheng+ in prep)** with other data to improve such measurements.
- The **deep fields** allow us to more accurately trace the **bias evolution** for different **populations (AGN vs SFGs)**.
- Future is exciting:
	- **Spectroscopic surveys** (i.e. **WEAVE-LOFAR**, Smith+ 2016) will allow us to **directly** measure **the spatial correlation function**, not use projected angular clustering
	- High resolution and LOFAR 2.0 will improve 1-halo studies and cross-correlating with optical/IR data