

1

Detection of interstellar radio recombination lines with NenuFAR

Lucie Cros^{1,2}, 1st year PhD student

Antoine Gusdorf^{1,2}, Philippe Salomé², Sergey Stepkin³ Philippe Zarka⁴, Alan Loh⁴, Pedro Salas⁵, Pierre Lesaffre¹

¹Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris ²LERMA, Observatoire de Paris, Université PSL, Sorbonne Université, 75014 Paris, France ³Institute of Radio Astronomy NAS of Ukraine, 4, Mystetstv St, Kharkiv, 61002, Ukraine ⁴ LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, 75014 Paris, France ⁵Green Bank Observatory, Green Bank, WV 24944, USA

Goal

→ Characterisation of the **diffuse ISM phase**.

Scientific context

- The cycle of matter in the ISM
- Advantages of Carbon RRLs
- Sources

> Data reduction

• NenuFAR, its obstacles, and how to tackle them

➤ First results

- Line detection
- From line fitting to physical constraints

> Next?

• Perspectives for the RRL team of NenuFAR

Cycle of matter in the Interstellar Medium

Carbon Radio Recombination Lines

•
$$E_0(H) = -13.6 \text{ eV}$$

• $E_0(C) = -11.2 \text{ eV}$

 \Rightarrow C⁺ in HI region

21-cm map of the Perseus arm J. English : Canadian galactic plane survey Lydrogen recombination

Carbon recombination

LOFAR Family Meeting 2024, 04/06/2024, Leiden, Netherlands

Carbon Radio Recombination Lines

•
$$E_0(H) = -13.6 \text{ eV}$$

• $E_0(C) = -11.2 \text{ eV}$

 \Rightarrow C⁺ in HI region

At high $n : 0 < T_{\chi} < T_{bg}$ \Rightarrow line in **absorption**

Salgado et. al 2017

 $\mathrm{C}\alpha(n)$ transition for $n\in[400,850]~(\Longleftrightarrow [10,85]~\mathrm{MHz})$:

$$\nu_{n+1 \rightarrow n} \propto \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right) \simeq \frac{2}{n^3}$$

$$\Rightarrow 450 \text{ lines in 70 MHz}$$

$$T_e, n_e, L$$

LOFAR Family Meeting 2024, 04/06/2024, Leiden, Netherlands

Sources

Source	Туре	Coordinates RA (J2000) Dec (J2000)	Flux density at 50 MHz [Jy]	Size arcmin [arcmin]	Velocity components [km/s]
Cassiopeia A	SNR	$23^{h}23^{m}27.94^{s} + 58^{\circ}48'42.4''$	27 104	7.4	-47, -38, 0
Cygnus A	Radio galaxy	$ 19^{h}59^{m}28.35^{s} + 40^{\circ}44'02.1''$	22 146	2.3	4
Taurus A	SNR	$05^{h}34^{m}31.97^{s} + 22^{\circ}00'52.1''$	2 008	7.9	14

NenuFAR (Nancay Observatory)

<u>Standalone radiotelescope</u> + LOFAR extension + SKA pathfinder

EXPERIMENTAL SETUP

- ~80 mini-array of 19 antennas
- Frequency range : [10, 85] MHz
- spectral resolution **df ~ 95 Hz**
- spatial resolution ~ 1°
- KP10 : Radio Recombination Lines
- Beamforming mode

Processin g of data example : Cassiopeia A, 2 hours

LOFAR Family Meeting 2024, 04/06/2024, Leiden, Netherlands

Processing of data example : Cassiopeia A, 71 hours

Processing of data example : Cassiopeia A, 71 hours

=> 3 velocity components : -47, -38 and 0 km/s₁₃

Detections

Source	On-source time (hours)	Expected velocity components (km/s)	Number of detection	Typical value of optical depth	Mean value of SNr
Cas A	71.5	-47, -38, 0	28	10 ⁻³	88
Cyg A	157.5	4	11	10 ⁻⁴	15
Tau A	104	14	17	10 ⁻⁴	13

CASSIOPEIA A

- 28 detections at 3σ threshold
- Stacks contains 7 to 30 lines
- SNR ∈ [7, 159]
- Depth of line $\in [0.8, 4.4] \times 10^{-3}$
- rms ∈ [2.4, 12.2] × 10⁻⁵

Velocity (km/s)

TAURUS A

- 16 detections at 3 σ threshold
- Stacks contains 10 to 30 lines
- SNR ∈ [6, 25]
- Depth of line ∈ [1.3, 5.4] × 10⁻⁴
- rms ∈ [1.2, 17.3] × 10⁻⁵

Inferring physical parameters of the local ISM => Methodology

- **1.** Fitting a voigt profile on each line
 - inferring the FWHM (w) and the integrated intensity (I) for each transition: we get a set of w(n) and l(n).
- **2.** Modeling the **variation** of *w* and *l* as a function the principal quantum number of each transitions *n*.
- **3.** Fitting the observed w(n) and l(n) with the **theoretical modelings** $w_{th}(n) \int I \Delta v_L$ and Δv_G .
 - > inferring constraints on the physical parameters T_e , n_e , T_0 , v_t , L.

Velocity (km/s)

Velocity (km/s)

Blending of components => less confidence in the results of the fits

2. Modeling the transitions

Gordon & Sorochenko, 2009 Salgado et al, 2017

LOFAR Family Meeting 2024, 04/06/2024, Leiden, Netherlands

2. Broadening and intensity as a function of quantum number

Salas et al, 2017

3. Fitting the variation of *w* and *I* as a function of *n* -> Method : minimisation of reduced χ^2 on a 5D grid

Optimal reduced $\chi^2 = 1.77$

Example for *Cygnus A*. Uncertainties are evaluated as the fifth percentile of the reduced χ^2 on the grid

3. Fitting the variation of *w* and *I* as a function of *n* -> Method : minimisation of reduced χ^2 on a 5D grid

Optimal reduced $\chi^2 = 1.77$

Example for *Cygnus A*. Uncertainties are evaluated as the first percentile of the reduced χ^2 on the grid

Cygnus A

Taurus A

Quantum number

Quantum number

	T _e (K)	n _e (cm ⁻³)	Т ₀ (К)	v _t (km/s)	L (рс)
Cyg A NenuFAR	46 ⁺⁸ -5	0.020 ^{+0.001} -0.001	1400 ± 100	6.5 ^{+1.2} -1.2	4 ± 0.5
Cyg A LOFAR	50 - 500	0.005 - 0.070	(2700)	-	-
Tau A NenuFAR	34 ⁺¹³ -7	0.035 ^{+0.009} -0.005	1000 ± 100	10.8 ^{+2.8} -3.1	1 ± 0.5

Cas A : -47 km/s

Cas A : -38 km/s

Quantum number

	T _e (K)	n _e (cm ⁻³)	Т _о (К)	v _t (km/s)	L (pc)
-47 km/s NenuFAR	39 ⁺⁷ 4	0.036 ^{+0.001} -0.001	2000 ± 100	3.0 ^{+1.2} -1.1	16 ± 0.5
-47 km/s LOFAR	85 ± 10	0.040 ± 0.005	1351 ± 83	2.013 ± 0.002	35.3 ± 1.2
-38 km/s NenuFAR	43 ⁺⁴	0.026 ^{+0.000} -0.001	1800 ± 100	4.3 ^{+1.1} -1.2	17 ± 0.5
-38 km/s LOFAR	85 ± 10	0.040 ± 0.005	1507 ± 128	4.069 ± 0.002	18.6 ± 1.6
0 km/s	16 ⁺¹¹ 5	0.042 ^{+0.015} -0.016	1200 ± 100	3.0 ^{+1.2} -1.1	0.5 ± 0.5

LOFAR Family Meeting 2024, 04/06/2024, Leiden, Netherlands

Quantum number

Cas A : -47 km/s

Cas A : -38 km/s

	T _e (K)	n _e (cm⁻³)	Т ₀ (К)	v _t (km/s)	L (pc)
-47 km/s NenuFAR	39 ⁺⁷ 4	0.036 ^{+0.001} -0.001	2000 ± 100	3.0 ^{+1.2} -1.1	16 ± 0.5
-47 km/s LOFAR	85 ± 5	0.040 ± 0.005	1351 ± 83	2.013 ± 0.002	35.3 ± 1.2
-38 km/s NenuFAR	43 ⁺⁴ -3	0.026 ^{+0.000} -0.001	1800 ± 100	4.3 ^{+1.1} -1.2	17 ± 0.5
-38 km/s LOFAR	85 ± 10	0.040 ± 0.005	1507 ± 128	4.069 ± 0.002	18.6 ± 1.6
0 km/s	16 ⁺¹¹ 5	0.042 ^{+0.015} -0.016	1200 ± 100	3.0 ^{+1.2} -1.1	0.5 ± 0.5

Quantum number

Perspectives

> Other transitions : C, H, He, S for α, β, γ, δ, ε

2D fitting : fitting directly the physics
 Resolution using machine learning

Paper in prep. : First detections of Carbon Radio Recombination Lines with the NenuFAR telescope

$C\beta$ towards Cas A

Thank you for your attention !

*Nenufar means waterlily in French