5th of June 2024, LOFAR Family Meeting

Pulsar Timing Arrays, the impact of LOFAR and NenuFAR

C. Tiburzi

INAF-OAC

The Gravitational Wave spectrum

The Gravitational Wave spectrum

PTAs: the nanoHertz window for gravitational waves

Pulsar timing arrays consist of an ensemble of very stable millisecond pulsars whose timing residuals are *spatially correlated* to detect GWs.

$$\begin{cases} \zeta(\theta_{ij}) = \frac{3}{2} x \log(x) - \frac{x}{4} + \frac{1}{2} \\ x = [1 - \cos(\theta_{ij})] \end{cases}$$

[Hellings & Downs, 1983]

First indication of a GWB signature in the EPTA data

 \sim 3 σ signal, lower than the targeted 5 σ detection threshold

Get in line, Gravitational Waves

GWs are not the only phenomena that perturb the regular arrival of a pulsar's radiation pulses.

The biggest competitors are:

Intrinsic irregularities in the pulsar spin ('Red noise' tout-court, RN) Variations in the plasma density along the LoS ('DM noise')

DM noise

Dispersion

DM noise

DM "noise"

Neutralizing the DM noise

→ Spectral modeling

Bayesian-based software such *Enterprise* to model the power spectra of the various noise sources

However

The bulk of PTA data is obtained at L-Band (~1.4 GHz) where the **DM noise is present** but **cannot be precisely calculated** because its signature does not have sufficient magnitude (Δt∝DM/f²)

Integrating the low-frequency datasets in PTAs

Impact of LOFAR/NenuFAR on the EPTA noise modeling

Impact of LOFAR/NenuFAR on the EPTA noise modeling

SW model testing, low-ecliptic pulsars [S. C. Susarla]

SW model testing, medium-ecliptic pulsars [S. C. Susarla]

SW model testing

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

0.0010

0.0005

0.0000

-0.0005

-0.0010

0

25

50

75

100

Solar Angle (degrees)

125

150

175

Δ*DM* (pc cm⁻³)

DM Residuals (pc cm⁻³)

[S. C. Susarla]

Ŧ

Ŧ

Epochwise

Epochwise-[Nitu2024 combined]

Epochwise-[Susarla2024 combined]

Nitu2024 combined

Susarla2024 combined

Pulsar monitoring with LOFAR2.0

- New hardware
- Higher angular resolution
- Increased sensitivity in the LBAs
- Simultaneous LBAs/HBAs observing
- Simultaneous LOFAR/NenuFAR observing
- Multibeaming

Our mascotte Luigi

Submission: LOFAR2.0 Large Programmes - Full proposal

PURR – PUlsars and Repeaters Research, a Pulsar and Fast Transient Monitoring Project

C. Tiburzi¹, C. G. Bassa², J. W. T. Hessels^{2,3}, G. H. Janssen^{2,4}, E. F. Keane⁵,
M. A. Krishnakumar^{6,7}, L. S. Oswald^{8,9}, M. Pilia¹, C. Sobey^{10,11}, X. Song², M. Trudu¹,
J. P. W. Verbiest¹², P. Weltevrede¹³, F. Abbate^{1,6}, J. Antoniadis^{14,6}, A. Antonova¹⁵,
A. Basu¹³, R. Basu¹⁶, A. V. Bilous¹⁷, C. Blanchard¹⁸, L. Błaszkiewicz¹⁹, M. Brionne¹⁸,
M. Burgay¹, M. Brüggen²⁰, J. A. Cázares²¹, A. Chalumeau^{22,23}, B. Ciardi²⁴,
A. Corongiu¹, P. Flisek¹⁹, M. P. Gawroński²⁵, A. Golden²⁶, J.-M. Grießmeier^{18,27},
M. Hoeft²⁸, H. Hu⁶, F. Iraci^{1,29}, F. Jankowski^{18,13}, O. A. Johnson⁵, A. Karastergiou⁸,
M. R. Kennedy³⁰, J. Kijak¹⁶, V. I. Kondratiev², K. Kozarev¹⁵, M. Kramer^{6,13},
A. Krankowski¹⁹, J. van Leeuwen², W. Lewandowski¹⁶, G. A. Lowes^{31,32}, K. Liu⁶,
Y. Liu^{33,34}, R. A. Main^{35,36}, J. W. McKee^{31,32}, D. McKenna^{5,2}, R. Miteva¹⁵, R. Nag^{1,29},
S. Osłowski³⁷, D. Perrodin¹, A. Parthasarathy^{2,6}, A. Possenti¹, N. K. Porayko^{22,6},
H. Qiu³⁸, A. Ridolfi^{1,6}, K. M. Rajwade², A. Rowlinson^{2,3}, K. Rozko¹⁶, D. J. Schwarz⁷,
M. Serylak^{38,39}, G. M. Shaifullah^{22,23,1}, M. Soida⁴⁰, S. C. Susarla²⁶, B. W. Stappers¹³,
A. Szary¹⁶, P. Tarafdar⁴¹, G. Theureau^{18,27,42}, S. ter Veen², C. Vocks⁴³,
E. van der Wateren^{2,4}, J. Wang^{44,7}, Z. Wu³³ and O. Wucknitz⁶

¹INAF - Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy

Thank you for your attention

Observing pulsars with LOFAR

- Observations ongoing since 2013
- Core observations:
 - Bi-monthly cadence
 - 52 pulsars
- International stations used as stand-alone telescopes:
 - Weekly cadence
 - >100 pulsars
 - 6 German, 1 French, 1 Swedish stations
 - Part of data streamed to the Juelich Supercomputing Center (Germany)
- All data are then transferred to the University of Bielefeld, where they are preprocessed (i.e., RFI-cleaned and beam-calibrated) and made ready to use

Observing pulsars with NenuFAR

- NenuFAR covers the <100 MHz band with a much better *bandpass* than the LBAs
- In terms of sensitivity, it is equivalent to the core, but over almost the whole 10-90 MHz band
- Pulsar observations ongoing since 2019 under the NenuFAR Pulsar KP
- >40 monitored pulsars
- 4 millisecond pulsars
- Bi-weekly to monthly cadence
- Higher precision in the measure of DM and RM

The upper leverage of low frequencies observations

PTAs: the nanoHertz window for gravitational waves

Gravitational waves by coalescing supermassive black-hole binaries perturb the space-time around the Earth and the pulsars, and induce 'red' deviations in the expected arrival times of the radiation pulses

$$P_{GWB}(f) = \frac{A^2}{12\pi^2} \left(\frac{f}{yr^{-1}}\right)^{2\alpha - 3 = -13/3}$$

[Detweiler 1979, Jenet+2005/2006]