

A cautionary tale about pipelines

It's time to raise the bar

Frits Sweijen

LOFAR Family Meeting, 04/06/2024 Surveys & Methods

Table of contents

Data reduction: LINC Target HBA DI selfcal

Why this talk

"De rode draad": we need better quality control in pipelines going forward

Examples that should have failed QC

Why this talk?

Updates to LINC HBA DI selfcal for difficult fields like galactic plane, bright sources or complex diffuse emission

...but these serve a greater narrative

Lots of knowledge gathered over the past decade or so LoLSS, LoTSS, full ILT: this should flow back into the (base) pipelines

Workflows have gotten more complicated, goals more ambitious Direction-dependent calibration, polarisation, long baselines: strict quality control will make life easier

LOFAR2.0 programs will only make this worse e.g. iLoTSS, LLoCuSS, LUDO

Data deletion protocols demand "sustainable calibration" No chance to go back and improve later, so we can't compromise early on How it began

ILT calibration of 3C 295 not quite working

ILT calibration of 3C 295 not quite working

Root cause: unacceptable solutions on Dutch stations!

Re-evaluating the LINC HBA target strategy

Current strategy ignores known limitations

We know the TGSS model is incomplete for LOFAR purposes

Limitations of TGSS

- 1. Lower resolution: 25" vs 6"
- 2. Lower sensitivity: 3.5 mJy/b vs 0.095 mJy/b median rms noise
- 3. TGSS ADR1 has 200 λ inner uv-cut LOFAR goes down to ~34 λ

Limitations of strategy

- 1. High time resolution, high frequency resolution, XX and YY separately
- 2. Discrete solutions between frequency chunks

Many degrees of freedom in an under-constrained problem!

Mistakes made in this way can not be corrected later

Updates to LINC HBA

OLD STRATEGY

- Split 48 MHz bandwidth in 24 independent 2 MHz chunks
- 2. Only one calibration against TGSS model
- 3. Diagonal: XX and YY phase solutions

UPDATED STRATEGY

- 1. Treat full bandwidth as 1x 48 MHz chunk with physically motivated constraints
- 2. First calibration using TGSS model
- 3. Image full FoV at 6" resolution
- 4. Second calibration against LOFAR model
- 5. Scalar: polarisation independent phase solutions

Better future improvement: start from LoTSS?

Image plane consequences

6" DI image - old strategy

6" DI image - new strategy

Now for the greater narrative

Many software packages

Lots of dependencies

Complicated pipelines

Hundreds of inputs, dozens of steps

saing stations lank_image_reg raday_rotatic check_ateam_separation blsmooth check demix check filtered_MS_array bandpass check_unflagged_fraction apply_calibrate pa apply_calibrate_fr chunk ms apply_calibrate_bp collectfiles compare_station_list ldv_linc_target compress concatenate_files createRMh5parm ldv_linc_calibrator LBA_target LBA_calibrator HBA targe HBA calibrat

Moving beyond "the pipeline"

It is time to get picky about our data and reflect on strategies

Moving beyond "the pipeline"

The pipeline itself is no longer the point or goal

Reflect on possible updates to trickle down

Strategies "out of date"? VLBI-suitable pre-processing in LINC? etc.

User friendliness Limit the number of required inputs

Pipelines are complicated, running them shouldn't be

Be strict about quality control e.g. don't want to wonder/worry about LINC when doing VLBI Indicate (potential) problems to the end user

When to abandon the data?

Fail (gracefully) on data or calibration not meeting criteria

Pipelines create a sense of trust, irrespective of how well they work Visual quality assessment is subjective and hard!

Inspection plots after observing

DE605C Serdes Ring 00 : normalised data, scale 0.9-1.2 200 250 140 (ZHW) ncy Leduer 160 Samples since observation start

Obviously bad

Looks "fine", but did not survive LINC!

Calibration solutions from LINC

We currently accept/ignore this

While we could have this

Image plane consequences

Old strategy

New strategy

But not always

"INFO: Final process status is success"... or is it

Nothing crashed, so it ran "successfully", but nothing is usable either, i.e. it should have failed.

"INFO: Final process status is success"... or is it

Nothing crashed, so it ran "successfully", but nothing is usable either, i.e. it should have failed.

Closing off

Thank you developers and maintainers for making complaints possible Software is hard; complaints are a sign that things are working and people are interested

Say no to status quo

- TGSS is not sufficient, DI selfcal in LINC should be the new default for HBA (as already done for a long with with e.g. ddf-pipeline)

Too much problematic data is allowed through with bandaids in later pipelines

- "No data is better that bad data", cut your losses and reobserve

Pipelines need to get more robust and automated quality control, especially the early ones like LINC

- Inspecting data and calibration is time consuming and tricky for both experts and non-experts

Lots of experts out in the field

- Community work are important signposts where to spend effort or what the pitfalls are
- Regular barometer needed to keep efforts and desires aligned

Thank you!