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Introduction

Quasi-periodic scintillations (QPS) are recurrent steady, non-random, trans-
lonospheric radio scintillation features.

Caused by blobs of ionospheric plasma with steep plasma density gradients
at their peripheries

Here we present two LOFAR case studies (pre-sunrise on 30". Jan 2018,
evening on 15™. Dec. 2016) under very quiet geophysical conditions (Kp <=
2+).

First time features of this kind seen in broadband



Observations 30-Jan-2018

Scaled Powe an-2018. PL612LBA Scaled Power )-Jan-2018. PL612LBA
Frequen 0 63 MHz Frequen s

A : 'Ringing Irregularity’ pattern ~24-minutes of sequential fades on
B : Boundary Signal Enhancement both Cygnus-A & Cass-A
C : Main signal fade / V-shaped fade



Observations 15-Dec-2016

Scaled Power, Cygnus A 15-Dec-2016 UK608LBA.
Timestamps: 18:26:20 to 18:39:09 UT
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Narrower main fades

More highly defined ringing irregularities

Shorter overall duration ~14 minutes

Partial / fewer examples detected by few of the remote stations in Netherlands.
Implies localised generation within a wider regional context



Geographical context
* lonospheric-pierce-point (IPP) mapping using
spherical Earth approximation
* IPP altitudes projected to 110 km & 250 km (E-
& F-region of ionosphere)
* Blue arcs for Cyg-A, orange for Cass-A

lonospheric pierce point position, 2016-12-15. Altitude: 110 km
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lonospheric pierce point position, 2016-12-15. Altitude: 295 km
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= Yellow spots indicate position and time of

. . QPS detections in 2016 observations
QPS present for full arc length in 2018 observations . 5., spots show ionosonde positions




* Delay-Doppler spectrum (DDS) is the
2D Fourier transform of the dynamic

spectrum

* Curvature of scintillation arcs is
related to velocity of plasma screen [
and distance from LOFAR station by

* L=2CV?

* Where:

* L = Distance to scattering screen

* C = Arc curvature
° V —
velocity

* Full theory in Cordes et al., (2006 b A

Plasma screen propagation

Delay-Doppler Spectra Dec-2016

Cygnus A 15-Dec-2016. UK60BLBA
Timestamps: 18:26:19 to 18:28:35
Frequency Range: 22.45 to 60.93 MHz
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Cygnus A 15-Dec-2016. UKG0SLBA
Timestamps: 18:30:50 to 18:33:05
Frequency Range: 22.45 to 60.93 MHz
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Cygnus A 15-Dec-2016. UK60BLBA
Timestamps: 18:35:25 to 18:37:10

Frequency Range: 22.45 to 60.93 MHz
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Cygnus A 15-Dec-2016. UK608LBA
Timestamps: 18:28:35 to 18:30:50
Frequency Range: 22.45 to 60.93 MHz

Scaled Power Delay-Doppler Spectrum
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Cygnus A 15-Dec-2016. UK608LBA
Timestamps: 18:33:05 to 18:35:25
Frequency Range: 22.45 to 60.93 MHz
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Cygnus A 15-Dec-2016. UK60SLBA
Timestamps: 18:37:10 to 18:39:0

Frequency Range: 22.45 to 60.93 MHz
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Delay-Doppler Spectra Jan-2018

Timestamps: 04:22:00 to 04:24:49
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Timestamps: 04:44:34 to 04:45:55
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Velocities estimations
30™. Jan. 2018 15". Dec. 2016
Altitudes ambiguous due to absence of Altitude established from local ionosonde

cotemporal ionsondes. Assumed either E- or F- (110 km). Colours indicate different
region (110 km or 250 km). Shows acceleration. LOFAR stations. Steadier velocity.

Velocities estimated from curve fitting of parabolic arcs

E- and F-region curve fitting velocity esimates for 2018 PL612 data

wy 05z Jo apnije Bujwnsse (s/w) Ayd0jaA

£
x
o
=
=
.
o
o
T
2
®
o
=
£
5
@
]
©
0
E
2
©
9
©
>

80

200 400 600 800 1000 1200 1400 1600 T T T
. i . 400 G600 800
Time since observations start (seconds)

Time since observation start(s)




Periodograms and size scales

* Both cases exhibit primary periodicities of ~120 sec, with shorter periods
corresponding to ringing irregularities

At velocities estimated (~150 ms™) corresponds to spacing between main fades (and
hence causal plasma blobs) of ~20 km.

* Plasma blobs themselves are, hence, < 20 km in size.

LOFAR periodogram Cygnus A 30-Jan-2018 PLE12Z2LEA

Timestamps: 04:30:28 to 04:41:44 LOFAR periodogram Cygnus A 15-Dec-2016 UK608LBA

Timestamps: 18:28:49 to 18:38:50
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Thin phase screen modelling

Uses Gaussian thin-screen To Source Incoming Unperturbed
T , :E:-igrjualifn::nlm .ISr::u:ur-::::e :

phase model to reproduce
LOFAR dynamic spectrum

Based on model developed by
Boyde et al., (2022).

Model can be tuned visually to g s 0 T
. . . Y YrYy ¥ YYY

apprOX|mate the orlglnal LOFAR Signal Distorted by the

dynamic spectrum lonosphere

Inputs include propagation
velocity of the phase screen (v),
observer position (x,z), initial
phase (®), and observing
frequency (f), distance between
peaks (L).




Thin phase screen modelling
Model run for altitudes of 110 km and 250 km in both case studies

* In both cases model well reproduces original LOFAR dynamic spectrum

* Both cases required very small phase distortions equivalent to < 0.01 TECu (very small!)
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Scaled Power, Cygnus A 30-Jan-2018 PL612LBA.
Timestamps: 04:32:09 to 04:41:44 UT
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Conclusions

LOFAR is highly sensitive to extremely small amplitude phase distortions in
the ionosphere (< 0.01 TECu, threshold detectability with GNSS).

Broadband capabilities and high cadence provide remarkable definition of
QPS enabling fundamental physics experiments with ionospheric plasma
induced radio scattering.

Both events occurred during very quiet geophysical conditions (no solar
flares, storms, CMEs, etc.). Likely to be terrestrially driven rather than solar
wind driven.

Highly reproducible with thin phase screen modelling.

First time these features observed in broadband and with such high definition
of ringing irregularities.
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Appendix — scintillation arc formation

Consequence of Huygens spherical wavelet principle

Incoming plane wave

Screen (ionosphere)

4
Observer

Inhomogeneous scattering screen in motion generates pair-wise signals (orange arrows) with same
delay as seen by observer. Motion adds Doppler effect. Combination thereof creates the arcs. Green
arrow shows path of minimal signal delay and Doppler effect.
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