

LOFAR Family Meeting June 3-7 2024

# Observations and Simulations of the Shortest Solar Radio Bursts with LOFAR

# Daniel L. Clarkson

With thanks to: Eduard Kontar, Nicole Vilmer, Mykola Gordovskyy, Xingyao Chen, and Nicolina Chrysaphi

Based on Clarkson et al. (2021, 2023)

# **Solar Radio Bursts**

Release of magnetic energy in solar flares accelerates electron beams that propagate along field lines

Plasma emission process leads to Langmuir wave  $\geq$ growth and radio emission near plasma frequency and/or its harmonic.



Frequency relates to distance:  $\geq$  $f_{pe} \propto \sqrt{n_e(r)}$ , where  $f_{pe}$  = plasma frequency  $n_e$  = plasma density r = radial distance



# **Plasma Density Fluctuations & Radio Burst Fine Structures**

Density fluctuations in the corona supress/promote the beam-plasma instability:

- Clumpy Langmuir wave growth  $\triangleright$
- Modulated radio emission (fine structures)  $\triangleright$





Kontar+2017

Type IIIb burst

a 60

50

40

Could be a signature of  $\geq$ fragmented energy release?

University

of Glasgow

# **Radio-wave Propagation Effects**



Photons travelling through plasma experience small angle deflections  $d\theta$  due to varying plasma density



Refractive index varies as 
$$n_{\text{ref}} = \left(1 - \frac{\omega_{\text{pe}}^2}{\omega^2}\right)^{1/2} \rightarrow \frac{\text{strongest scattering near}}{\text{the emitting region}}$$

#### **Field-aligned density fluctuations**

- elongated along magnetic field direction
- anisotropic scattering shifts the apparent position of the source in the direction of the local magnetic field (Kontar+2017, 2019)



LOFAR







### Low Band Antenna

- Baseline: 3.5 km
- Beam-formed mode
- > Outer LBA configuration
- $\succ$  Time resolution: 10 ms
- Freq. resolution: 12.2 kHz
- Spatial Resolution: ~9' at 30 MHz
- Frequency range: 10-80 MHz



van Haarlem+2013

University of Glasgow





0 500 1000 1500 2000

X [arcsec]

0 500 1000 1500 2000

X [arcsec]

0 500 1000 1500 2000

X [arcsec]

# What Governs the Spike Decay Time?



Observed spike durations below ~1 GHz could be a combination of the time the electron beam takes to cross a particular inhomogeneity and broadening due to scattering

Observed spike time profile governed by radio-wave propagation effects, rather than particle collisions, and defines a minimum observable duration at a given frequency for particular turbulent conditions.

The emission timescale would be shorter and more intense than assumed without a scattering correction (tens of milliseconds at decametre wavelengths)

University

## Conclusion



- Solar radio burst fine structures experience significant scattering effects, broadening their time profiles and source sizes, and shifting the apparent source.
- Directive centroid displacement parallel to the solar limb suggests strong anisotropy of the density fluctuation spectrum, indicating sources embedded in a large-scale coronal loop.
- Radio-wave scattering governs the time profile of the shortest duration radio bursts, defining a minimum observable duration at a given frequency.
- The non-radial motion of the spike sources can be replicated in anisotropic radio-wave scattering simulations using a dipolar magnetic field structure.
- Correcting the spike duration for scattering infers a shorter and more intense emission timescale than assumed from observations.