LOFAR-CHEXMATE study of radio halo clusters

Marco Balboni^{1,2}, F. Gastaldello, A. Bonafede, S. Ettori, A. Botteon, R. Cassano and the IASF-Milan Cluster group.

¹INAF-IASF Milan ²DiSAT Insubria

LOFAR Family 2024 - June 5, 2024

Radio-X analysis

Radio profile re-scaling

Overview

Introduction

- Galaxy cluster at different wavelengths
- New generation (radio) analyses
- Datasets

Radio-X analysis

Point-to-Point correlation

Radio profile re-scaling

- Scaling laws recap
- Results

Summary

Radio-X analysi 000 Radio profile re-scaling

Summary 00

Galaxy cluster multifrequency approach

Radio-X analysis 000 Radio profile re-scaling

Summary 00

Galaxy cluster multifrequency approach

Radio-X analysis 000 Radio profile re-scaling 00000 Summary 00

Galaxy cluster multifrequency approach

Merger-induced turbulence scenario (details yet unclear)

Radio-X analysis 000 Radio profile re-scaling 00000 Summary 00

New gen. radio analyses

Merger-induced turbulence scenario (details yet unclear)

New analyses through spatially resolved studies with recent radio facilities (e.g. LOFAR, MeerKAT, uGMRT, ASKAP, MWA):

• X-ray vs radio brightness studies, but with different instruments, frequency and resolution adopted (e.g. Govoni+01, Cova+19; Xie+20)

 \rightarrow link X-ray and radio features (e.g. Botteon+23)

- \rightarrow reconstruct clusters' dynamical history (e.g. Biava+24)
- <u>α-index vs thermodynamic quantities</u>, few studies found contrasting results (e.g. Orru⁴+07, Pearce+17, Botteon+20, Rajpurohit+21)

Spatially resolved re-scaling

Introduction 00000 Datasets Radio-X analysis 000 Radio profile re-scaling 00000 Summary 00

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- Cluster absolute mass scale
- Cluster statistical properties
- How cluster properties changes over the time

Datasets

Radio-X analysis 000 Radio profile re-scaling

Summary 00

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- Cluster absolute mass scale
- Cluster statistical properties
- How cluster properties changes over the time

LoTSS

- Deep 120-168 MHz survey of the Northen sky
- High sensitivity (100 $\mu Jy/beam$)
- Ideal for halos studies

Introduction 00000 Datasets Radio-X analysis 000 Radio profile re-scaling

Summary 00

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- Cluster absolute mass scale
- Cluster statistical properties
- How cluster properties changes over the time

LoTSS

- Deep 120-168 MHz survey of the Northen sky
- High sensitivity (100 μ Jy/beam)
- Ideal for halos studies

Radio-X analysis 000 Radio profile re-scaling 00000 Summary 00

Datasets: CHEX-MATE - LoTSS DR2

	Name	Other name	RA	DEC	Z	M500
1	PSZ2 G031.93+78.71	A1775	205, 47093	26,36844	0,0724	2,71801
2	PSZ2 G040.58+77.12	A1800	207,34932	28,10892	0,0748	2,5692
3	PSZ2 G046.88+56.48	A2069	231,03137	29,888	0,1145	5,10386
4	PSZ2 G048.10+57.16	A2061	230, 31609	30,62783	0,0777	3,53963
5	PSZ2 G049.32+44.37	A2175	245,12655	29,89338	0,0972	3,7634
6	PSZ2 G055.59+31.85	A2261	260,61499	32,13541	0,224	7,7238
7	PSZ2 G056.77+36.32	A2244	255,66631	34,05107	0,0953	4,33797
8	PSZ2 G066.41+27.03	PSZ1G066.41+27.03	269,21019	40,13411	0,575	7,69497
9	PSZ2 G077.90-26.63	077.90-26.63 A2409		20,96802	0,147	4,989
10	PSZ2 G083.29-31.03	MCSJ2228.5+2036	337,14043	20,62113	0,412	7,64251
11	PSZ2 G107.10+65.32	A1758	203,17767	50,51829	0,2799	7,79955
12	PSZ2 G111.75+70.37	A1697	198,2768	46,281	0,183	4,34221
13	PSZ2 G113.91-37.01	MCXCJ0019.6+2517	4,9128	25,2908	0,3712	7,58223
14	PSZ2 G143.26+65.24	A1430	179,81181	49,79255	0,3634	7,2567
15	PSZ2 G179.09+60.12	A1068	160,18562	39,95326	0,1372	3,83868
16	PSZ2 G186.37+37.26	A697	130,73818	36,3676	0,282	10,99804
17	PSZ2 G192.18+56.12	A961	154,1	33,62222	0,124	3,62013
18	PSZ2 G053.53+59.52	SZ2 G053.53+59.52 A2034		33,49148	0,113	5,20856

CHEX-MATE: A LOFAR pilot X-ray – radio study on five radio halo clusters

M. Baltomi^{1,2}, F. Gastaldello¹, A. Bontafele^{1,4}, A. Botteon¹, I. Bartalacci¹, H. Bourdin^{1,1,1}, G. Brunetti¹, R. Cassano¹, S. De Grandl¹, P. De Laca^{10,1}, S. Forteo¹, S. Gitzaria¹, M. Gitt¹, A. Johnston¹, Daph¹, M. Johnston-Hollit¹, H. Lovisari¹, P. Mazzotta^{10,1}, S. Molendl¹, E. Pointecouteau¹, G.W. Part¹, G. Kiya^{1,1}, M. Rossetti¹, H. Rottgering⁰, M. Sereno⁵, R. J. van Weere¹, Y. Ventur¹, J. Versne¹, ¹ H. Rossani¹, P. Mazzotta^{10,1}, J. S. Molendl¹, E. Pointecouteau¹, G.W. Part¹, G. Kiya^{1,1}, M. Rossetti¹, H. Rottgering⁰, M. Sereno⁵, R. J. van Weere¹, Y. Ventur¹, J. Versne¹, ¹

model predictions

2. Radio-X analysis

Introd	
0000	oc

Radio-X analysis ○●○ Radio profile re-scaling 00000

X-ray vs radio brightness - LoTSS DR2

- Compute a mesh grid covering the whole radio and X-ray diffuse emission
- Extract the surface brightness values from the images
- Plot I_X and I_R values for all clusters

Radio-X analysis 000

X-ray vs radio brightness - LoTSS DR2

- Compute a mesh grid covering the whole radio and X-ray diffuse emission
- Extract the surface brightness values from the images
- Plot I_X and I_R values for all clusters

Radio-X analysis ○●○ Radio profile re-scaling 00000 Summary 00

X-ray vs radio brightness - LoTSS DR2

Radio-X analysis ○○● Radio profile re-scaling 00000 Summary 00

$I_X - I_R$ correlation slope

Radio-X analysis ○○● Radio profile re-scaling 00000 Summary 00

$I_X - I_R$ correlation slope

Radio-X analysis ○○● Radio profile re-scaling 00000 Summary 00

$I_X - I_R$ correlation slope

3. Radio profile re-scaling

Radio-X analys 000 Radio profile re-scaling ○●○○○ Summary 00

Self-similar scenario

• Gravity dominates at clusters scales, causing self-similar evolution.

Radio-X analysis 000 Radio profile re-scaling ○●○○○ Summary 00

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
 - Scaling relations among integrated quantities, $L_X M$, T M, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)

Marco Balboni

Radio-X analysis 000 Radio profile re-scaling ○●○○○ Summary 00

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
 - Scaling relations among integrated quantities, $L_X M$, T M, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)
 - (re-)Scaling of resolved properties as density or thermodynamic profiles (e.g. Arnaud+2010, Bartalucci+23, Rossetti+24)

Marco Balboni

Radio-X analysis 000 Radio profile re-scaling ○●○○○ Summary 00

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
 - Scaling relations among integrated quantities, $L_X M$, T M, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)
 - (re-)Scaling of resolved properties as density or thermodynamic profiles (e.g. Arnaud+2010, Bartalucci+23, Rossetti+24)
- They found deviations from self-similar predictions and constrained their origin (e.g. Pratt+22, Ettori+23)

Radio-X analysis 000 Radio profile re-scaling

Summary 00

Scaling laws in radio

- Non-thermal component scaling relations have been studied for integrated quantities: $P_{radio} L_X$, $P_{radio} M$, $P_{radio} Y_{SZ,500}$ (e.g Cassano+13, Kale+15, Cuciti+23)
 - \rightarrow finding departures from self-similarity

Radio-X analysis 000 Radio profile re-scaling

Summary 00

Scaling laws in radio

- Non-thermal component scaling relations have been studied for integrated quantities: $P_{radio} L_X$, $P_{radio} M$, $P_{radio} Y_{SZ,500}$ (e.g Cassano+13, Kale+15, Cuciti+23)
 - \rightarrow finding departures from self-similarity
- No studies have been made on the scaling of spatially resolved properties (but also on the radio halo redshift dependence)

Radio-X analysis 000 Radio profile re-scaling ○○○●○ Summary 00

Radio profile re-scaling

• Extracted the radial profiles from the 16 CHEX-MATE – LoTSS DR2 (z < 0.4)

Radio-X analysis 000 Radio profile re-scaling

Summary 00

Radio profile re-scaling

- Extracted the radial profiles from the 16 CHEX-MATE LoTSS DR2 (z < 0.4)
- Exploited the Cuciti+23 RH sample to derive mass and redshift dependence

Radio-X analysis 000 Radio profile re-scaling

Summary 00

Radio profile re-scaling

- Extracted the radial profiles from the 16 CHEX-MATE LoTSS DR2 (z < 0.4)
- Exploited the Cuciti+23 RH sample to derive mass and redshift dependence
- Derive the expected scaling in mass for the profiles assuming $R_H \sim M^{\beta_M} E_z^{\beta_Z}$. Compared the mass expected dependence with the best-fit scaling

Radio-X analys 000 Radio profile re-scaling ○○○○● Summary 00

Radio profile re-scaling - Results

	$ \gamma_M$	$\Delta \gamma_M$	$\mid \gamma_z$ (fixed)	$\Delta \gamma_z$	σ_{int}	$ \Delta_{\sigma}$
$I_{150MHz} \propto M^{\gamma_M}$	3.68		0	1		0.05
$I_{150MHz} \propto M^{\gamma_M} E_z^{4/3}$	3.41	0.38	4/3	1	0.24	0.04
$I_{150MHz} \propto M^{\gamma_M} \ E_{z,{ m fixed}}^{\alpha_M+4/3}$	2.85	0.43	4.10	/	0.28	0.04

Radio-X analysis 000 Radio profile re-scaling ○○○○● Summary 00

Radio profile re-scaling - Results

Radio-X analysi 000 Radio profile re-scaling ○○○○● Summary 00

Radio profile re-scaling - Results

		$ \gamma_M$	$ \Delta \gamma_M$	$\mid \gamma_z$ (fixed)	$\Delta \gamma_z$	$\sigma_{\textit{int}}$	Δ_{σ}
	$I_{150MHz} \propto M^{\gamma_M}$	3.68	0.43	0	/	0.22	0.05
($I_{150MHz} \propto M^{\gamma_M} E_z^{4/3}$	3.41	0.38	4/3	/	0.24	0.04
	$I_{150MHz} \propto M^{\gamma_M} E_{z,{ m fixed}}^{\alpha_M+4/3}$	2.85	0.43	4.10	/	0.28	0.04

 $ightarrow \gamma_{\mathsf{M,exp}} = \mathbf{2.35} \pm \mathbf{0.39}$

 $\gamma_{
m M,exp}=$ 2.10 \pm 0.49 imes

Marco Balboni

Radio-X analysis 000 Radio profile re-scaling ○○○○● Summary 00

Radio profile re-scaling - Results

4. Summary

Radio-X analysis

Radio profile re-scaling

Summarv 00

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- A strong, positive correlation among the radio and X-ray surface brightness.
 I_X I_R sub-linear slopes indicating a flatter distribution of the non-thermal component wrt the thermal one.
 No clear slope mass/dynamical status relation at 144 MHz (higher freg.?).
 - freq.?).

Radio-X analysis

Radio profile re-scaling

Summarv

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- R X
 No clear slope mass /duration
 - No clear slope mass/dynamical status relation at 144 MHz (higher freq.?).

We performed a tentative radio profile re-scaling as usually done for the thermal component:

- by applying "self-similar" scaling we significantly reduced the profile scatter
 found consistency among the best-fit mass scaling of the observed
 - profiles and the expected one.

Radio-X analysis

Radio profile re-scaling

Summarv

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- A strong, positive correlation among the radio and X-ray surface
- A strong, positive end brightness. *I_X I_R* sub-linear slopes indicating a flatter distribution of the non-thermal component wrt the thermal one.
 No clear slope mass/dynamical status relation at 144 MHz (from 7).
 - No clear slope mass/dynamical status relation at 144 MHz (higher

We performed a tentative radio profile re-scaling as usually done for the thermal component:

- by applying "self-similar" scaling we significantly reduced the profile scatter
 - found consistency among the best-fit mass scaling of the observed profiles and the expected one.

Thank you for the attention!

	Ζ	M_{500}	R_{500}	P_{150}	I ₀	R_e	σ_{RMS}
Ζ		0.58	-0.01	0.67	0.39	-0.11	-0.08
M_{500}	0.58		0.71	0.78	0.61	0.04	-0.00
R_{500}	-0.01	0.71		0.42	0.38	0.19	0.03
P_{150}	0.67	0.78	0.42		0.60	0.28	-0.02
I ₀	0.39	0.61	0.38	0.60		-0.40	-0.08
R_{e}	-0.11	0.04	0.19	0.28	-0.40		0.08
σ_{RMS}	-0.08	-0.00	0.03	-0.02	-0.08	0.08	

Table: Spearman rank among quantities.

Backup slides

Backup slides

