LOFAR-CHEXMATE study of radio halo clusters

Marco Balboni 1,2 , F. Gastaldello, A. Bonafede, S. Ettori, A. Botteon, R. Cassano and the IASF-Milan Cluster group.

¹INAF-IASF Milan ²DiSAT Insubria

LOFAR Family 2024 - June 5, 2024

Overview

1 [Introduction](#page-2-0)

- [Galaxy cluster at different wavelengths](#page-3-0)
- [New generation \(radio\) analyses](#page-6-0)
- **•** [Datasets](#page-7-0)

2 [Radio-X analysis](#page-11-0)

• [Point-to-Point correlation](#page-12-0)

³ [Radio profile re-scaling](#page-18-0)

- **•** [Scaling laws recap](#page-19-0)
- **a** [Results](#page-25-0)

1. Introduction

Galaxy cluster multifrequency approach

Galaxy cluster multifrequency approach

Galaxy cluster multifrequency approach

Merger-induced turbulence scenario (details yet unclear)

New gen. radio analyses

Merger-induced turbulence scenario (details yet unclear)

New analyses through spatially resolved studies with recent radio facilities (e.g. LOFAR, MeerKAT, uGMRT, ASKAP, MWA):

X-ray vs radio brightness studies, but with different instruments, frequency and resolution adopted (e.g. Govoni $+01$, Cova $+19$; Xie $+20$)

 \rightarrow link X-ray and radio features (e.g. Botteon+23)

- \rightarrow reconstruct clusters' dynamical history (e.g. Biava+24)
- \bullet α -index vs thermodynamic quantities, few studies found contrasting results (e.g. Orru'+07, Pearce+17, Botteon+20, Rajpurohit+21)

• Spatially resolved re-scaling

Datasets

[Introduction](#page-2-0) [Radio-X analysis](#page-11-0) [Radio profile re-scaling](#page-18-0) [Summary](#page-32-0)

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- **Cluster absolute mass scale**
- Cluster statistical properties
- How cluster properties changes over the time

CHEX-MATE Collaboration 2021

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- Cluster absolute mass scale
- Cluster statistical properties
- How cluster properties changes over the time

LoTSS

- Deep 120-168 MHz survey of the Northen sky
- High sensitivity (100 μ Jy/beam)
- Ideal for halos studies

CHEX-MATE

- Representative PSZ sample of 118 GC
- Homogeneous X-ray coverage
- Low and high redshift objects (Tier1 and Tier2)

Aims

- **Cluster absolute mass scale**
- Cluster statistical properties
- How cluster properties changes over the time

LoTSS

- Deep 120-168 MHz survey of the Northen sky
- High sensitivity (100 μ Jy/beam)
- Ideal for halos studies

Datasets: CHEX-MATE - LoTSS DR2

CHEX-MATE: A LOFAR pilot X-ray - radio study on five radio halo clusters

M. Balboni^{1,2}, F. Gastaldello¹, A. Bonafede^{3,4}, A. Botteon⁴, I. Bartalucci¹, H. Bourdin^{10, 11}, G. Brunetti⁴, R. Cassano⁴, S. De Grandi¹³, F. De Luca^{10,11}, S. Ettori^{6, 7}, S. Ghizzardi¹, M. Gitti^{3, 4}, A. Iqbal⁸, M. Johnston-Hollitt¹⁴, L. Lovisari¹, P. Mazzotta^{10, 11}, S. Molendi¹, E. Pointecouteau⁵, G.W. Pratt⁸, G. Riva^{1, 12}, M. Rossetti¹, H. Rottgering⁹, M. Sereno^{6, 7}. R.J. van Weeren⁹, T. Venturi⁴, I. Veronesi¹

Found (radial) changes of the thermal/non-thermal ratio Exploited such analyses to test model predictions

2. Radio-X analysis

X-ray vs radio brightness - LoTSS DR2

- Compute a mesh grid covering the whole radio and X-ray diffuse emission
- Extract the surface brightness values from the images
- Plot I_X and I_R values for all clusters

X-ray vs radio brightness - LoTSS DR2

- Compute a mesh grid covering the whole radio and X-ray diffuse emission
- Extract the surface brightness values from the images
- Plot I_X and I_R values for all clusters

X-ray vs radio brightness - LoTSS DR2

$I_X - I_R$ correlation slope

$I_X - I_R$ correlation slope

$I_X - I_R$ correlation slope

3. Radio profile re-scaling

Self-similar scenario

Gravity dominates at clusters scales, causing self-similar evolution.

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
	- Scaling relations among integrated quantities, $L_X M$, $T M$, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
	- Scaling relations among integrated quantities, $L_X M$, $T M$, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)
	- \bullet (re-)Scaling of resolved properties as density or thermodynamic profiles $(e.g. Arnaud+2010, Bartalucci+23, Rossetti+24)$

Self-similar scenario

- Gravity dominates at clusters scales, causing self-similar evolution.
- This is well studied through X-ray observation of the thermal plasma:
	- Scaling relations among integrated quantities, $L_X M$, $T M$, $L_X T$ (e.g. Pratt+2009, Lovisari+2015)
	- \bullet (re-)Scaling of resolved properties as density or thermodynamic profiles (e.g. Arnaud+2010, Bartalucci+23, Rossetti+24)
- They found deviations from self-similar predictions and constrained their origin $(e.g. Pratt+22, Ettori+23)$

Scaling laws in radio

- Non-thermal component scaling relations have been studied for integrated quantities: $P_{radio} - L_X$, $P_{radio} - M$, $P_{radio} - Y_{SZ,500}$ (e.g Cassano+13, Kale+15, Cuciti+23)
	- \rightarrow finding departures from self-similarity

Scaling laws in radio

- Non-thermal component scaling relations have been studied for integrated quantities: $P_{radio} - L_X$, $P_{radio} - M$, $P_{radio} - Y_{SZ,500}$ (e.g Cassano+13, Kale+15, Cuciti+23)
	- \rightarrow finding departures from self-similarity
- No studies have been made on the scaling of spatially resolved properties (but also on the radio halo redshift dependence)

Radio profile re-scaling

• Extracted the radial profiles from the 16 CHEX-MATE – LoTSS DR2 ($z < 0.4$)

Radio profile re-scaling

- \bullet Extracted the radial profiles from the 16 CHEX-MATE LoTSS DR2 ($z < 0.4$)
- Exploited the Cuciti+23 RH sample to derive mass and redshift dependence

Radio profile re-scaling

- \bullet Extracted the radial profiles from the 16 CHEX-MATE LoTSS DR2 ($z < 0.4$)
- Exploited the Cuciti+23 RH sample to derive mass and redshift dependence
- Derive the expected scaling in mass for the profiles assuming $R_H \sim M^{\beta_M} E_z^{\beta_Z}.$ Compared the mass expected dependence with the best-fit scaling

Radio profile re-scaling - Results

Radio profile re-scaling - Results

Radio profile re-scaling - Results

 $\gamma_{\mathsf{M,exp}}=2.35\pm0.39$ $\gamma_{\mathsf{M,exp}}=2.10\pm0.494$

Radio profile re-scaling - Results

4. Summary

R - X

[Introduction](#page-2-0) [Radio-X analysis](#page-11-0) [Radio profile re-scaling](#page-18-0) [Summary](#page-32-0)

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- A strong, positive correlation among the radio and X-ray surface brightness.
- $I_X I_R$ sub-linear slopes indicating a flatter distribution of the non-thermal component wrt the thermal one.
	- No clear slope mass/dynamical status relation at 144 MHz (higher freq.?).

R - X

R

[Introduction](#page-2-0) [Radio-X analysis](#page-11-0) [Radio profile re-scaling](#page-18-0) [Summary](#page-32-0)

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- A strong, positive correlation among the radio and X-ray surface brightness.
- $I_X I_R$ sub-linear slopes indicating a flatter distribution of the non-thermal component wrt the thermal one.
	- No clear slope mass/dynamical status relation at 144 MHz (higher freq.?).

We performed a tentative radio profile re-scaling as usually done for the thermal component:

- by applying "self-similar" scaling we significantly reduced the profile scatter
- found consistency among the best-fit mass scaling of the observed profiles and the expected one.

R - X

[Introduction](#page-2-0) [Radio-X analysis](#page-11-0) [Radio profile re-scaling](#page-18-0) [Summary](#page-32-0)

Summary and future prospects

We analysed a cluster sample uniformly observed in radio and X-ray finding:

- A strong, positive correlation among the radio and X-ray surface brightness.
- $I_X I_R$ sub-linear slopes indicating a flatter distribution of the non-thermal component wrt the thermal one.
- No clear slope mass/dynamical status relation at 144 MHz (higher freq.?).

We performed a tentative radio profile re-scaling as usually done for the thermal component:

- by applying "self-similar" scaling we significantly reduced the profile R
scatter
	- found consistency among the best-fit mass scaling of the observed profiles and the expected one.

Thank you for the attention!

Table: Spearman rank among quantities.

Backup slides

Backup slides

