# Tracing large-scale gas outflows from spiral galaxies in clusters with LOFAR

#### A. Ignesti [INAF-Padova] & the GASP team

Based on Ignesti et al., 2023, A&A, 675, A118







European Research Council Established by the European Commission

# Intro: Spiral galaxies in clusters have radio continuum tails (and LOFAR is very good at detecting them)



- 172 out of 875 RPS galaxies (~20%) show radio continuum tails (from Crosset et al., in preparation, for z<0.25)</li>
- Radio tails are present in both clusters and groups (Roberts+2021b)
- They are **10-60 kpc long**, typically oriented away from the clusters center (Roberts+2021, Smith+2022)



#### From:

- Ignesti+2022, 2023
- Roberts+2021a,c, 2023 (with AI)
- Hedler et al., submitted (with Al)
- Hu+2023 (with AI)
- Muller+2021 (with AI)

## Intro: Ram pressure stripping in galaxy clusters

#### ICM ram pressure stripping

 $P = \rho_{ICM} V^2 [Gunn \& Gott 1972]$ 



## A qualitative model of RPS radio tail



- Proposed for the first time by Vollmer+2004 for NGC 4522
- Supported by spectral index steepening (e.g., Vollmer+2004, 2021, Chen+2020, Muller+2021, Ignesti+2022c, Roberts+2023)
- Observed radio length D depends on observed frequency v (Ignesti+2022c)

$$\frac{D_1}{D_2} = \sqrt{\frac{\nu_2}{\nu_1}}$$

## A qualitative quantitative model of RPS radio tail

- 1)CRe moving with velocity **V** from the stellar disk get older with the distance
- 2)Old CRe → Steep/ curved synchrotron spectrum
- 3) Radio emission fades with the distance at observed v



Ignesti et al., 2023, A&A, 675, A118

#### **Assumptions:**

- Uniform magnetic field ( $B=B_{CMB}/\sqrt{3}$ )
- Uniform projected velocity V
- Only synchrotron and IC losses

## A qualitative quantitative model of RPS radio tail



## $\rightarrow$ Fit flux density/spectral index profile to constrain stripped cloud velocity V

#### **Assumptions:**

- Uniform magnetic field ( $B=B_{CMB}/\sqrt{3}$ )
- Uniform projected velocity V
- Only synchrotron and IC losses

#### Testing the model in Abell 2255 with LOFAR and uGMRT



+ spectral index

**7 galaxies** with radio tails from A2255 (z=0.08) Ultra-deep LOFAR and uGMRT observations (Botteon+2021, Rajpurohit+2023)

Dec (J2000)

#### **Results**



- Succesfull fit on 5 out of 7 galaxies
- Consistent results between flux density at 144 MHz, 400 MHz, and spectral index
- V=160-430 km/s → FIRST MEASURE OF STRIPPED OUTFLOW VELOCITY

 $\rightarrow$  Model of uniform advection of 'radio' clouds can reproduce the observations

#### Testing the model in the Coma cluster (Roberts et al., 2023, with AI)



- Same method applied on 18
  RPS galaxies in Coma
- Large frequency coverage: 144, 400, 700 and 1500 MHz
- The model fits the data and constrains V in the same range as A2255



**Stripped cloud velocity** [V=160-430 km s<sup>-1</sup>]

**Stripped cloud velocity** [V=160-430 km s<sup>-1</sup>]

Stripped (radio) clouds [T>t<sub>rad, 144</sub>~(1-3)x10<sup>8</sup> yr] survival time-scale







#### **Summary and conclusions**

1)A new model to constrain the ISM outflow speed induced by ram pressure stripping in clusters

2)Tested on Abell 2255 (*Ignesti et al., 2023*) and Coma (*Roberts et al., 2023, with Al*), it constrains the stripped ISM outflows velocity in 100-600 km/s

3)Stripped ISM clouds velocity provide crucial constraints on ram pressure stripping in clusters

→ Only possible by combining radio, optical and X-ray observations

4

Low-frequency radio continuum observations can be fundamental in the future of galaxy evolution studies in clusters and groups



Thank you for your attention

# **EXTRA**

#### **On the magnetic field**



#### **Resulting 3D velocity**

