Measuring high-energy cosmic rays at SKA-Low

Arthur Corstanje Vrije Universiteit Brussel

for the SKA High energy cosmic particles working group

LOFAR Family Meeting, Leiden, June 3-7, 2024

SKAO

· F

Radboud Universiteit

Longitudinal profile of number of particles

Extensive air showers

Pulses in SKA-Low antennas

Integrate 'power' in a time window

- Width of time window not too large (noise)
- Same in data as in simulations
- Pulse contains more information: shape, polarization, timing

Monte Carlo setup for SKA reconstruction

- Mimic LOFAR-style measurement & X_{max} reconstruction
- Create 140 CoREAS simulated showers
- Apply SKA Antenna model
- Add realistic level of sky noise
- Trigger threshold 4 or 5 sigma
- For each SKA antenna, determine pulse energy fluence
- Store 'measurements' + uncertainties
- Simulated ensemble of 140 showers, use each in turn as 'data'
- Run reconstruction pipeline
 - Chi-squared fit of energy fluence footprints, sim vs 'data'

Measured footprint

- Scatter in measured energy from noise
- Size varies, even for the same incoming direction (X_{max} sensitive)

Outlier showers, 'double bumps'

Toy model

- Sometimes, one nucleon takes away a lot of energy after first interaction
- · May take time before interacting again: starts 'second shower'

Outlier showers, 'double bumps'

- Filter to 150 350 MHz band for sharper features
- Secondary shower visible separately (though uncommon)

Outlier showers

- Simulated measurement with noise
- SNR boost by a factor 2 from beamforming patches of 4 antennas
- Feature in the center is visible in the footprint!

Outlier showers

- SNR boost by a factor 4 from beamforming patches of 16 antennas
- Further enhancement; clearly detectable double structure

Beyond Xmax: Longitudinal distribution of particles

$$N(X) = \exp\left(-\frac{X - X_{\max}}{RL}\right) \left(1 + \frac{R}{L}\left(X - X_{\max}\right)\right)^{\frac{1}{R^2}}$$

Parameter L: width (variance)

Parameter R: asymmetry (skewness)

Xmax and L vs mass composition and hadronic interaction models

Average **Xmax** and **L** over 1000 showers Varying mass composition Blue = Sibyll 2.3c Orange = QGSJetII-04

Can distinguish between hadronic interaction models by measuring *L* !

Distribution (tail) of L parameter: proton fraction

Tails are highest for helium, not protonsIndependent handle on proton fraction!

13

Reconstruction result for X_{max}

50 - 350 MHz

Primary energy 2 x 10^{17} eV, ~ 8000 antennas triggered Minimum of enveloping parabola estimates X_{max} Resolution 6-8 g/cm² (current state of the art 20 g/cm²)

Reconstruction result for L/R

(higher-order particle distribution parameters) 50 – 100 MHz

Particle detector array at SKA-Low

- Particle array of ~ 100 detectors
- Scintillators from Kascade-Grande collaboration (KIT)
- Funding: 740k euro by FWO (Belgium)
- Test array of 8 prototypes being built

Prototype at Murchison Wide-field array site (next to SKA-Low)

Design: University of Manchester

Deployment: Curtin University 16

Detecting PeV gamma rays?

- Detecting radio signals well below the noise in every antenna
 - interferometry/beamforming needed
 - Optimal (matched) filtering
 - External or online trigger??

Summary / On the science case

- Xmax resolution < 8 g/cm²
 - · Make the most detailed picture of individual air showers ever
 - Will reveal limitations in the models including the hadronic interaction models at energies > LHC !
- Improve the mass composition measurements
 - Extra, independent information from longitudinal distribution 150-
 - Better H / He separation, astrophysically relevant
 - Extends to lower energy range, <= 10¹⁶ eV
 - Effective area ~ x5, hence better statistics
- Two similar observatories in North and South
 - LOFAR and SKA-Low
 - Same principles, same analysis methods, same code
 - Resolve tension Auger LOFAR??

