

THE UNIVERSITY of EDINBURGH

Survey

Bohan Yue (University of Edinburgh)

Email: <u>bohan.yue@ed.ac.uk</u> Supervisors: Prof. Philip Best, Dr. Ken Duncan 10/04/24, 3rd Year PhD Colloquium

New constraints on the contribution of star formation and AGN activity in quasar radio emission from the LOFAR Two-metre Sky

Background **Open questions to the standard model**

- Low spatial resolution due to observation limits
 - Radio loud/quiet: dichotomy or continuous distribution?
 - How to distinguish between the host galaxy emission and weak AGN activities?
 - What powers the radio emission in radio-quiet quasars/red quasars?
- What affects the powering efficiency of jets?

Data From LoTSS DR1 to DR2

- Target selection: SDSS DR16 quasars in LoTSS DR2 field
- -> <u>361,119</u> quasars (=10x LoTSS DR1)
- Characterised by i-band magnitude and redshift

sourc of Nun

Noceing Separating SF and AGN in radio flux density distribution

- AGN and SF contribute to the observed radio emission of <u>every</u> quasar
- Radio SF luminosities are drawn from Gaussian distribution on log space 4.0
 - Parameters: L_{μ}/Ψ (mean SF) **luminosity/SFR)**, σ_{ψ} (scatter in SFR)
- AGN luminosities are drawn from single power-law distribution
 - Parameters: γ (power-law slope), ϕ/f (jet power normalisation)
- SF+AGN component = PDF of total flux density
- 3.5 3.0 value 2.5 o².0 1.5 $0.5 \ 10^{-3}$ 10^{-2}

$-24 < M_i < -23$ 0.8 < z < 1.2 Sample size: 20937

 ~10% of quasars are significantly 'redder' in optical colour

Red QSOs are dusty QSOs

 Red QSOs tend to be more radio-loud (e.g. Rosario+20)

Rules out the assumption of different torus orientations

- What contributes to the radio excess?
- Correlate SF and jet component separately to quasar optical colours

Above: red quasars (rQSOs) showing a higher detection fraction in LoTSS compared to blue ('control') quasars (cQSOs) (credit: Rosario+20)

Radio enhancement in red QSOs only takes place in <u>AGN activity</u>

- SF component remains unchanged; AGN component increase with redness
 - Radio enhancement in red **QSOs** happens in the AGN activity
- Signs of increasing power-law slope in redder colours
 - Radio enhancement happens more likely in radiofaint/intermediate sources

- Where does the red colour come from?
 - Merger-induced starburst takes place in quasar host: red QSOs
 - ➡ AGN jet drives away the obscuring dust: blue QSOs
- Why does the radio excess mostly comes from AGN component?
 - Weak jet breaks down in dense **ISM/circumnuclear environment**
 - Or wind shocks? (Petley+24)

Different evolutionary phase!

Above: artist's impression of red and blue guasars outlining the evolutionary path and the key structures within each object (credit: S.Munro)

Application 2: BH masses

- Does $M_{\rm BH}$ affect the radio loudness of quasars?
 - RL quasars host more massive BHs than RQ quasars (e.g. McLure&Jarvis+04)
 - No correlation between radio loudness and BH mass (e.g. Gurkan+19, Arnaudova+24)
- Need quantitative tool to constrain the influence on radio emission
- \blacksquare Correlate SF and jet component to $M_{\rm RH}$

Key assumptions

Application 2: BH masses

Within each grid we bin the quasars into 5 BH mass percentiles (0%-20%, 20%-40%, 40%-60%, 60%-80%, 80%-100%)

Application 2: FH masses Motivation for a new definition of quasar radio loudness

Application 2: BH masses A physically motivated definition for quasar radio loudness

Application 2: BH masses A physically motivated definition for quasar radio loudness

 No bimodality between RL and RQ quasars in BH mass

 No bimodality between RL and RQ quasars in BH mass

	SF dominated	Radio intermediate	AGN dominated	SU
RQ	190023	9773	1244	<u>2010</u>
RL	1890	5278	10734	<u>179</u>
SUM	<u>191913</u>	<u>15051</u>	<u>11978</u>	

- No bimodality between RL and RQ quasars in BH mass
- R = log L_{1.4}/L_i > 1 gives clean selection of RQ quasars (94.5% SF dominated), but included radio intermediate sources into the RL population that wipe out the trend (59.9% AGN dominated)
 - We provide model-confirmed clean selection for both RL and RQ quasars

- RL quasars tend to be more massive on the high-mass end ($M_{\rm BH}>10^{8.3}M_{\odot}$)
- Only 5% of the sources show enhanced radio loudness due to BH mass
- Only top 20% of BH mass support such enhancement
- (Fancy) Massive central black holes are required to support powerful jets?
- (Fancy) Mixture of different accretion mode?
- (Not-so-fancy) biased BH mass measurements?

Take-home messagesand thanks for listening

- We present a two-component model to disentangle <u>star-forming component</u> from host galaxies and <u>jet component</u> from AGNs in quasar radio emission
- Our model concludes the radio excess in red QSOs comes from AGN activity, not host galaxy SF
- Radio excess happens more likely in RQ/radio-intermediate sources, pointing to a weak jet/wind shock origin
- No significant connection between quasar radio emission and BH mass in both SF and AGN component for most of the sources
- However quasars with the most massive (top 20%) central BHs are able to support powerful jets that leads to excess in radio continuum that takes place in 5% of the sources

Full sample

The difference between RL/RQ disappears after removing top 20% of BH mass -> they are the <u>only</u> cause to radio enhancement

0-80% BH mass

BH mass cumulative distribution function in each of the $M_i - z$ grids to remove degeneracy

SMBH Mass $[log_{10}(M_{\bullet}/M_{\odot})]$