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AGN at Radio Wavelengths

Most frequencies have emission from multiple AGN

components e.g accretion disc or corona ~ (NASA/CXC/SA0)
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At radio wavelengths we can study the non-thermal 2 Towmm | MIRNR_ | Softxry_ Gamd
emission and the emission is not affected by dust [EElp ISHEIR e

obscuration

So we can probe the central region which can not be
done at other wavelengths
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Add international stations to further improve

AGN with LOFAR

LOFAR provides high sensitivity at low

frequencies.

resolution similar to optical instruments
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Allowing faint radio population to be studied
including Radio Quiet AGN at redshift 5

No longer limited to local Radio Quiet and
Radio Loud AGN
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AGN with LOFAR

We can also probe older, more diffuse emission
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(Mahatma et al. 2023)
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Radio Loud vs Radio Quiet

Radio-Loud - High radio to optical flux density ratio -
Large Scale Jets

Radio-Quiet - Small radio to optical flux density ratio -
90% of the AGN population is Radio Quiet

Previously limited to Radio Loud AGN or local Radio
Quiet - Clear divide in Kellerman et al. 1989 using VLA
atR=10

(Kellerman et al.
1989)
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Radio Loud vs Radio Quiet

Increasing number of Radio Quiet sources with LOFAR 61
quickly demonstrated lack of a dichotomy (Gurkan et
al. 2019)

- Jet Dominated

log(Lagn/Lsk)

Macfarlane et al. 2021 shows that introducing the
radio-loudness cut off (L5GHz/1.4400 = 10) misses out
jet-dominated AGN.

{Macfarlane et al. 2021)
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Radio Loud vs Radio Quiet

Increasing number of Radio Quiet sources with LOFAR quickly demonstrated lack of a dichotomy (e.g.
Gurkan et al. 2019, Macfarlane et al. 2021)

Arnaudova et al. 2024 uses median stacking techniques to compare Radio Loud and Radio Quiet optical
spectra, finding Radio Loud appear more reddened. However gradually increasing radio-loudness
provides a smooth transition to redder spectra.

Not a clear Radio Loud cut.
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(E. Escott)

FR Morphology

Fanaroff and Riley (1974) separated AGN into two
morphology classes

Luminosity cut can be made between the two classifications

Associated with different accretion modes (Jackson & gaprt © 1 T BT LT EET A
. E

Rawlings 1997) Sal 2 %, 3% “

3,13 %, ’ 22 225 z?% 2
: : o eee - e ol?2 2 £2.252 ‘ )

FR1 - bright central regions with diffuse emission towards + 2 %, 22%@222252 )2 ) ) Iy

. o c o .o . . = 2 T1g3] 1

jet termini - radiatively inefficient (LERGs) g T ? -32 1 gl ] 1?31 " .
%mr_ 111111]”111”1111 1 1 1

FRII - bright hotspots within the lobes - associated with £ IR EUER R 111‘11

. . . . OO : 8 ! 1 1 11

higher radio luminosity - radiatively efficient (HERGs) =L |1 » 11 T

S T21 216 -222 -22.8 —234 -24 -24.6

(Owen & Ledlow 1994) m,,

10
Emmy Escott



FR Morphology

Fanaroff and Riley (1974) separated AGN into two
morphology classes

Luminosity cut can be made between the two classifications

Associated with different accretion modes (Jackson &
Rawlings 1997)

FR1 - bright central regions with diffuse emission towards
jet termini - radiatively inefficient (LERGs)

FRII - bright hotspots within the lobes - associated with

higher radio luminosity - radiatively efficient (HERGs)
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(Mingo et al. 2019)
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FR Morphology

Mingo et al. 2019, 2022 uses the luminosity cut in LoTSS Deep Fields and DR1 and shows a
massive overlap between FRI and FR2

Mingo et al. 2022 discovers FR classes do not relate to the central engine - mostly independent of
accretion mode. FR classes could relate to Stellar Mass
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Radio Loud Sizes

Hardcastle et al. 2019 - P-D diagram of DR1 Radio
Loud AGN of resolved and unresolved sources with
evolutionary tracks depending on jet powers.
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Radio Loud Sizes
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Radio Loud Activity

Sabater et al. 2019 - Local Radio Loud AGN are always turn on

Igo et al. 2024 - Large sample of Radio Loud AGN in the eFEDs field. Confirms more massive
galaxies are more likely to be turned on - see next talk!

log(Le/[W Hz"1]) = 24 log(Lr/[W Hz"1]) = 24.5 log(La/[W Hz™1]) = 25
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Radio Quiet Emission

Origin of radio emission from Radio Quiet AGN is currently unknown - it could be produced
from jets, star formation or winds (see Panessa et al. 2019 for a review)

Need high resolution to determine radio emission (Escott et al. in prep)
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Red Quasars

Klindt et al. 2019 - Using FIRST found red
quasars are more likely to be radio detected

This is confirmed using DR2 after matching for
redshift and AGN luminosity

| Avimaos) , luminosities confirmed using the Deep Fields
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See Bohan Yue’s talk for
his work on red quasars

Previous results showing radio enhancement in
red quasars is greater at radio intermediate

(Fawcett et al. 2023) £&~ ") (maos! (Calistro Rivera et al. 2024)
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Outflows - BALQSOs

Broad Absorption Line Quasars (BALQSOs) show absorption in Si IV and C IV which have been linked to disk
winds

BALQSOs are more likely to be radio detected than non-BALQSOs, even more so as reddening is increased.

BALQSOs are more intrinsically red but reddening can not fully explain increased radio detection
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Outflows - [O III]

[0 111 5007 A can be used to trace, warm ionised gas outflows. If a broad, blueshifted component is fit to [OIII]
then this is indicative of an outflow

Using LOFAR (144MHz), FIRST (1400MHz) and VLASS (3000MHz) obtains spectral indices to split sample into
peaked and non-peaked spectral sources. Stacks [OIII] in SDSS spectra and finds peaked sources show an
outflowing component whereas non-peaked do not
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Outflows - [O III]

[0 IIT] 5007 A can be used to trace, warm ionised gas
outflows. If a broad, blueshifted component is fit to
[O11I] then this is indicative of an outflow.

Escott et al. Submitted - Sample of SDSS spectra with a
population with detections from LoTSS Deep Fields.
Using both spectral fitting and W80 measurements -
find higher prevalence of [OIII] outflows in radio
detected than radio non-detected AGN.

Using median stacking find an enhanced in the
outflowing component in radio detected AGN after
normalising for the [OIII] core component.
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Outflows - [O III]

Reducing the Bootes Deep Field with International
station to obtain a 0.3” widefield image.

Using these high resolution morphologies alongside
brightness temperature measurements (Morabito et al.
2022) determine origin of radio emission of these radio
quiet AGN.
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Summary

LOFAR has allowed for a rapid increase in knowledge in the field of AGN

Furthered our understanding of the Radio Loud/Quiet Dichotomy, Radio AGN
morphologies, and sizes

Expanded our knowledge of red quasar, BALQSOs and outflows

By including sub-arcsecond images we are probing a new regime of AGN
Physics!

Keep doing great science!
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Wind strength = C 1V distance

(Richards et al. 2021)



