Galaxy detection with deep learning in radio data

David Cornu

Collaborators: B. Semelin, P. Salomé, X. Lu, S. Aicardi, J. Freundlich, F. Mertens, A. Marchal, G. Sainton, F. Combes, C. Tasse

LUX, Observatoire de Paris, PSL

LOFAR Family meeting 2025, Paris, IPGP

Simulated datasets that should resemble typical SKA data products

Source detection and characterization

Florent Mertens' talk on Monday

SDC1: Continuum 2D images
3 integration times x 3 bands
Each image = 4 GB

From Dec 2018 to April 2019

of HI emission

Full cube = 1 TB

From Feb 2021 to July 2021

SDC3: 21 cm emission
Visibility and Image
Full size ~ 7 TB

EoR Focused, 2023-2025

You Only Look Once (YOLO)

Regression-base deep learning object detector

Supervised method → learns from a list of bounding box examples

Application to SKAO SDC1

SKA SDC1 summary paper, Bonaldi et al. 2021

Data:

Simulated continuum image:

- 5.5 square degree area (pixel size 0.6")
- 560 MHz, 1000h integration time
- 4GB image (32,768 pixel square)

The challenge:

- 1. Find the sources (RA, Dec)
- 2. Characterize each source:
 - → (Flux, Bmaj, Bmin, PA, ...)

Training labels provided for a subpart of the image (5% of the surface, ~34 000 sources).

SKA SDC1 took place early 2020. Challenge data are publicly available on the dedicated web-page.

Example 512² sub-field

Detection example fields

Global result

MINERVA team paper SDC1, YOLO-CIANNA → Cornu et al. 2024, A&A 690 A211

Comparison to other teams

- Challenge score 2.4 times higher than the original SDC1 winning team.
 - Detect 60% more sources
 - Best characterization accuracy
- Challenge score 1.6 times higher than the other post-challenge score published.

Prediction time for the full image ~8 sec Using a single RTX 6000 ada GPU

SKA SDC2 summary paper, Hartley et al. 2023

Data: a 3D cube of simulated HI emission

- 20 square degree area
- 950 to 1150 MHz frequency (30KHz res; z = 0.235-0.495)
- 2000h integration time
- Near 1 TB cube (5851 x 5851 x 6668)

The challenge:

- 1. Find the sources (RA, Dec, Freq)
- 2. Characterize each source:
 - → Flux, HI size, line width, PA, Inclination

Training labels available for a secondary 40GB cube (1 sq deg, ~1600 sources)

SKA SDC2 took place in 2021. Challenge data are publicly available on the dedicated web-page.

Detection examples

Images are based on 40x40x120 cutouts centered on a source. Signal is averaged over the source dimension in the projected axis.

Detection examples

Images are based on 40x40x120 cutouts centered on a source. Signal is averaged over the source dimension in the projected axis.

Detection examples

MINERVA team paper SDC2, YOLO-CIANNA-3D → Cornu et al. 2025, submitted (arXiv:2509.12082)

Comparison to other teams

- Won the original SDC2
- The updated version of the method improves our challenge score by 10%
- Highest characterization score

Prediction time for the ~1TB cube ~30min (dominated by data loading)

Using a single RTX 6000 Ada GPU

Generalizing to SKA precursors

LOFAR

ASKAP

MeerKAT

Preliminary work on generalizing to the

On going application of our method to the LoTSS and RACS surveys

PhD thesis starting next month
Student => Adam Zarka

PhD thesis started last spring
Student => Adrien Anthore

WALABY and LADUMA surveys

Main difficulty → building robust training sample for each survey

Collaboration propositions from survey experts are welcome!