Radio measurements of cosmic rays: the road from LOFAR to LOFAR 2.0 to SKA

Anna Nelles

Deutsches Elektronen Synchrotron, DESY Erlangen Centre for Astroparticle Physics

Arthur Corstanje

resenting results from
KSP Cosmic Rays
SWG High Energy Particles

LOFAR Family Meeting, Paris
September 2025

Open questions in cosmic ray physics

- What are the Galactic sources and how do they influence their surroundings?
- Are spectral features related to propagation or acceleration? How does the particle composition change?
- Is there a measurable flux of gammarays at PeV energies and can it help to pin-point sources?
- Is there new particle physics at energies not reachable with accelerators?

Top of the atmosphere

Our tool: Radio signals from air showers

Extensive air showers

Longitudinal profile of number of particles

Extensive air showers

How do we do this in practice at LOFAR (LORA)

Used to trigger a readout of the TBB buffers of each antenna

How do we do this in practice at LOFAR (LORA)

Used to trigger a readout of the TBB buffers of each antenna

Pulses in LOFAR antennas

Our raw material:

- One pulse in every dipole
- (unprocessed time series)
- Amplitude & integrated power
- Arrival time
- Polarization
- Shape / spectrum

Cosmic rays with LOFAR a success story

- First cosmic rays with LOFAR in 2011
- LOFAR was the standard-setting experiment to understand the emission and push the envelope of what is possible
- It lead to a serious effort in improving simulations: the data was too good for the simulations
- Spin-offs: Lightning (see talks on Friday)

The reason: the number of antennas

A&A 560 (2013); Phys. Rev. D 90, 082003 (2014); JCAP P10 (2014) 014; AstroPart Phys, 61, 22-31 (2015); Astropart Phys, 65, 11-21, (2015); JCAP 05 (2015) 018; Phys. Rev. Lett. 114, 165001 (2015); JINST 10(2015)P11005; A&A 590, A41, (2016); Nature 531, 70-72, (2016); Phys. Rev. D 93, 023003 (2016); Phys. Rev. D 94, 103010 (2016); Phys. Rev. D 95 (2017) 8, 083004; Astropart.Phys. 111 (2019) 1-11; Astropart. Phys. 123 (2020) 102470; JCAP 11 (2020) 017; Phys. Rev. D 103, 102006 2021; Phys. Rev. D 108, 083041 2023; Eur. Phys. J. C (2023) 83: 1146; Phys. Rev. D 110 (2024) 10, 103036; Geophysical Research Letters, 52 (2025) 8

Matching simulated footprints to data

- Simulate about 30 showers per measured shower
- Fit them to data, observe
 X_{max} of best fit

- Resolution (@LOFAR) about 20 g/cm²
- Systematic uncertainties < 9 g/cm²
- In line with state of the art in the field

Result: Average X_{max} versus primary energy

- Green lines: average X_{max} for pure proton composition
- Red lines: average X_{max} for pure iron composition

Corstanje et al., Phys Rev D 103, 102006 (2021) arXiv: 2103.12549

LOFAR 1.0 results on mass composition

- Light-mass component (p+He)
 of 23 to 39% at best fit
- Still considerable (correlated) uncertainties, some inevitable
 - overlap of X_{max} distributions
 - Hadronic interaction models

Main coverage in lg E: 17.4 +/- 0.3

Towards LOFAR 2.0

 Current analysis limited by statistics: need factor 10 to have composition trend with energy, and better resolution

- Expanded particle detector array
- Access to HBA unbeamformed data together with LBA: (see next slides)
- Use beamforming to expand energy range downward

- Analysis so far only measures shower maximum:
 - Get smarter for better H/ He separation

 New methods in development for LOFAR 2.0 and SKA-Low

Towards LOFAR 2.0 and SKA

- Same principles, same objectives: but many, many more antennas
- Synergies by using the same software framework (https://github.com/nu-radio/NuRadioMC)
- Develop new, advanced analysis techniques to be used at both observatories
- Measure North-South differences, if any (same) systematics, mostly!)

The power of LOFAR lies in the accumulated data-set, SKA has to play catch-up

The high frequencies: Example of HBA data

- We have tried this around 2014 (arXiv:1411.6865)
- Had to be lucky in pre-beamformed HBA data, whenever it aligned with arrival direction
- Cherenkov ring: sharper features at higher frequencies

SKA-Low, a really dense array

LOAFR methods for SKA-Low

- If we simply use the 'old' methods developed for LOFAR 1.0 for SKA-Low
- Huge improvement in precision

Can we push towards lower shower energies?

- Lower energies needed to access Galactic science
- Results stay good down to 10¹⁶ eV with pseudo-beamforming, work in progress to go even lower

Converting a reconstruction parameter to physics

- How many showers are useful?
 - Systematic uncertainties >> statistical uncertainties
 - A mass composition in narrow energy bins, improving over LOFAR (2021)
- What do we expect from 1000 SKA showers?

Best fit **LOFAR Results** Syst & stat uncertainties Stat uncertainties 100 % fraction [20 N Fe N Fe He He Sibyll2.3d QGSJetII-04 **EPOS-LHC**

Corstanje et al., Phys. Rev. D 112, 023017, 2025

What about 'new' methods?

Lots of on-going work to carve out new approaches that give another push

- At LOFAR we have been working with the best events and single key variables
 - very robust and stable, but limited in statistics
- How about using all events and the full waveforms?
 - leveraging ML
 - work in progress for LOFAR
 - new opportunities for SKA

Moving into particle physics: Longitudinal distribution of particles

$$=\exp\left(-\frac{X-X_{\max}}{RL}\right)\left(1+\frac{R}{L}(X-X_{\max})\right)$$

 $N(X) = \exp\left(-\frac{X - X_{\max}}{RL}\right) \left(1 + \frac{R}{L}\left(X - X_{\max}\right)\right)^{\frac{1}{R^2}}$ Parameter L: width (variance) Parameter R: asymmetry (skewness)

Oddest showers fro helium: Independent handle on proton fraction!

Outlier showers, 'double bumps', new physics

- Fraction of these ~ few %, varies with mass comp & hadronic interaction models
- Filter to 150 350 MHz band for sharper features

Outlier showers with SKA

- In LOFAR there were never enough antennas to do this easily, good hope for SKA
- This is very much work in progress for new methods

Summary

- Two major observatories taking radio-CR measurements to the next level
 - Using new techniques developed for SKA
 - Using same analysis code, (https://github.com/nu-radio/NuRadioMC)
- LOFAR 2.0: full duty cycle, LORA expansion
 - See mass composition trends with energy
 - Competitive statistics over time (multiple obs years)
 - Benefits from new analysis techniques being developed
- SKA-Low: "ultimate" precision per air shower
 - New techniques improve particle identification
 - Energy range down to at least 10¹⁶ eV
 - Hadronic physics

