

Station health

Bernard Asabere

Station health

Station health

- ➤ DUPPLO L0 Requirement: LOFAR2-814:
 - LOFAR2 shall be capable of observations of ≤1 minute
- > LOFAR1 limit: 1min
- > Test observations 1 min 1 sec
- ➤ With RS307 (CS002 + CS032)
- ➤ Target PSR B1919+21
- > Pulsar is visible (spectral)
 - 1 min, 45 sec, 30 sec, 15 sec, 10 sec 5 sec & 3 sec
- But observations failed (no data recorded)
 - 2 sec & 1 sec
- Current limit 3 sec.

DUPLLO: the Digital Upgrade for Premier LOFAR Low-band Observing.

AST(RON

Station health

- ✓ LOFAR2-814:
 - LOFAR2 is capable of observations of ≤1 minute
- ✓ The current exposure time limit is 3 sec
- ✓ First successful test observation
- ✓ Starting point to do more of the tests
- > Spectrum of the individual period of the pulsar B1919+21, from the 3-sec observation:
 - Mostly dominated by RFI, but the point of observation was not to get individual pulses.
 - But to show that short observations are possible without data loss with LOFAR2

Station statistics

Aida Ahmadi

Statistics data products

Station statistics are recorded to an object storage system (minIO) at each station & synced centrally

4.4 MiB

2025-09-22T07:46:46.067874+00:00.json Mon, Sep 22 2025 09:46 (GMT+2)

- BST: Beamlet statistics → average power in each beamlet
- SST: Subband statistics → average power in each subband
- XST: Crosslet statistics → array covariance matrices (ACM) / visibilities
- Saved as JSON files containing 5 minutes of data
- Metadata stored separately
- To make sense of them:
 - Collate metadata + data for desired time range using a Python package developed by David McKenna et al. (12json)
 - Plot the collated dataset using a Python package developed by Cees Bassa et al. (lofty)

Continous monitoring of the BSTs to facilitate commissioning

AST(RON

- We continuously and automatically generate dynamic spectra from the BSTs every hour for each station / band
- · A bot dumps the plots to a Slack channel for monitoring

Helps us quickly understand the state of commissioning (e.g. see test observation results, need to reset station after a state transition)

All-sky imaging of the XSTs

AST(RON

- LBA all-sky images for SB 300 (58.6MHz) for all available L2 stations
- Gives a quick view of the state of the station calibrations

courtesy of Cees Bassa

Fullband LBA (Cees Bassa)

Simultaneously: full band HBA! (Cees Bassa)

Station calibration

Cristina-Maria Cordun

!! Convert to visibilities first !!

Before

After

CS002 mystery

Cristina-Maria Cordun (representing David McKenna)

David McKenna 1 Jul at 9:11 AM Spot the difference

Screenshot 2025-07-01 at 09.10.57.png ▼

SEFDs

Emma van der Wateren, on behalf on Pragya Chawla

SEFDs

- Previously: interferometric
- Cross-correlations of visibilities on calibrators
- Requires multiple stations

Van Haarlem et al. (2013)

Source selection

- Convolve beam with sky models
- (T_on T_off) / T_off
- Use known flux density to get SEFD

HBA 110-190 MHz SEFDs

Monitoring ionospheric scintillation

Aleksandar Shulevski

+ Maaijke Mevius, Pietro Zucca, Henrik Edler

Monitoring ionospheric scintillation

LOFAR2 single station commissioning observation of CasA used to derive the S4 index for the ionosphere. Strong scintillation is detected, most likely originating from a wide-area disturbance moving across the FoV. This would potentially affect production observations, depending on their setup.

Monitoring ionospheric scintillation

Monitoring the ionosphere and space weather in general can be crucial for proper utilization of the upgraded LOFAR instrument, while generating useful ancillary data.

Array calibration

Cristina-Maria Cordun

HBA worked before, so we focus on LBA

$$\phi = \phi_0 + 2\pi\Delta t\nu - 8.4479745 \cdot 10^9 \frac{\tau_1}{\nu}$$

AST(RON

Phases (one station)

Tuning LOFAR2.0 in phase

Raw, uncalibrated images

a.k.a. how well can LOFAR2 stay on source?

Noa Peters

Cassiopeia A observation

- White rabbit
- (some) station calibration tables $\overline{f V}$

Offset ?

7 stations (CS002, CS003, CS004, CS005, CS006, CS007, CS032), 2 hrs, LBA 20-68 MHz, briggs -0.5

- Correlator tracking problem? Station calibration tables? Ionosphere?
- Commissioning ! 👼

PULP2

Emma van der Wateren, on behalf of Vlad Kondratiev

LOFAR2 Beamformed Pulsar Folding

- CWL reimplementation
- Modular, portable, maintainable
- Overarching suite, specialised pipelines
- Works manually on CEP4, and CEP6
- Implementation into TMSS will come this year

(from Lorimer & Kramer "Handbook of Pulsar Astronomy")

Main CWL pipeline steps:

Quickview diagnostic plot

Can we detect a pulsar?

Emma van der Wateren

Figure 7: Diagnostic plots for the CS032HBA1 observation recording stokes IQUV data.

Figure 8: Diagnostic plots for the RS307HBA observation recording stokes IQUV da

Figure 6: Diagnostic plots for the CS032HBA0 observation recording stokes IQUV data.

Figure 5: Diagnostic plots for the CS001HBA1 observation recording stokes IQUV data.

Figure 5: Diagnostic plots for the CS001HBA1 observation recording stokes IQUV data.

Figure 4: Diagnostic plots for the CS001HBA0 observation recording stokes IQUV data.

The first calibrated LOFAR 2.0 image

Henrik Edler

The first calibrated interferometric observation

- 1h parallel LBA + HBA observation of Cyg A
- 8 Stations: Superterp + CS032 + RS307

The first calibrated LOFAR 2.0 image

- 8 stations
- Joint LBA+HBA 120 168 MHz
- Resolution: 18' x 4'
- Noise level ~ 5 Jy/beam

AST(RON

