

Searching for LOFAR-selected optical/NIR-dark galaxies in the EDF-N

A new population of high-z starburst/AGN systems?

Marika Giulietti (IRA-INAF)

<u>In collaboration with:</u> I. Prandoni, L. Bisigello, G. Rodighiero, M.Bondi, M. Talia, F. Gentile, G. Girardi, L Wang, A. La Marca, P. A. C. Cunha, R. Scaramella, A. Lapi, H. J. A. Rottgering and many more...

LOFAR Family Meeting - Paris, Sept.2025

Introduction

Radio continuum emission is an unbiased tracer of star-formation: synchrotron emission (supernovae remnants) + free-free emission (HII regions).

Radio selection effectively identifies populations of dusty star-forming galaxies up to high-redshifts (z≤6; e.g. Talia et al. 2021, Enia+2022, Behiri+2023, Van der Vlugt+2023, Gentile+2024a, 2025)

Optical/NIR dark (or faint) galaxies significantly contribute to the cosmic SFRD (e.g. Simpson+2014, Wang+2019, Gruppioni+2020, Franco+2018; Williams+2024).

Talia+2021

Large area and high-sensitivity needed Studies of Rs-NIR dark galaxies so far limited to high radio frequencies (e.g. 3 GHz)

→ LOFAR + Euclid

LOFAR EDF-N observations and multi-band catalogue

Bondi+2024:

- 72h LOFAR HBA 144 MHz observations covering 10 deg²:
- θ= 6"
- $\sigma = 32 \,\mu Jy \, beam^{-1}$
- 23 309 sources peak S/N > 5

Bisigello+2025:

- Optical/MIR counterpart association:
 - HEROES (UV/opt) catalogue IRAC (MIR) maps (Euclid collaboration: Moneti+2022)
- Herschel (FIR) cross-match
- Improved positional accuracy with 2.5x2.5 deg² image obtained with ILT at θ = 1.5" and σ =36 μ Jy beam⁻¹

Robust identification strategy: Likelihood Ratio (LR) method + targeted visual inspection -> 99.2% identification rate

LOFAR EDF-N observations and multi-band catalogue

Bondi+2024:

- 72h LOFAR HBA 144 MHz observations covering 10 deg²:
- θ= 6"
- $\sigma = 32 \,\mu Jy \, beam^{-1}$
- 23 309 sources peak S/N > 5

Bisiqello+2025:

- Optical/MIR counterpart association:
 - HEROES (UV/opt) catalogue IRAC (MIR) maps (Euclid collaboration: Moneti+2022)
- Herschel (FIR) cross-match
- Improved positional accuracy with 2.5x2.5 deg² image obtained with ILT at θ = 1.5" and σ =36 μ Jy beam⁻¹

Robust identification strategy: Likelihood Ratio (LR) method + targeted visual inspection -> 99.2% identification rate

Searching for Radio Selected Dark Galaxies in Euclid

^{*}no overlap between 3σ MIR emission of the target and 3σ MIR/NIR emission of nearby objects

Example of an isolated source:

Isolated sample (88 sources)

Mu	iti-banc	i data

Band	$\lambda_{ ext{eff}}$	Depth	FWHM
	[µm]		[arcsec]
CFHT/MegaCam u	0.372	24.2 mag	0.89
HSC g	0.480	25.7 mag	0.90
CFHT/MegaCam r	0.640	24.8 mag	0.71
Euclid VIS/IE	0.715	25.45 mag	0.16
HSCz	0.891	24.1 mag	0.71
Euclid NISP/Y _E	1080.9	24.6 mag	0.3
Euclid NISP/JE	1367.3	24.1 mag	0.3
Euclid NISP/H _E	1771.4	23.9 mag	0.3
Spitzer/IRAC1	3.550	24.8 mag	1.66 - 1.95
Spitzer/IRAC2	4.493	24.8 mag	1.72 - 2.02
Spitzer/IRAC3	5.696	20.8 mag	1.88
Spitzer/IRAC4	7.799	21.9 mag	1.98
WISE W3	12.082	19.1 mag	8.5
WISE W4	22.194	17.2 mag	17
AKARI/FIS65	65	3.2 Jy	37
AKARI/FIS90	90	$0.55\mathrm{Jy}$	39
AKARI/FIS140	140	3.8 Jy	58
AKARI/FIS160	160	7.5 Jy	61
Herschel/SPIRE250	250	$0.045\mathrm{Jy}$	18.2
Herschel/SPIRE350	350	$0.037 \mathrm{Jy}$	24.9
Herschel/SPIRE500	500	$0.054 \mathrm{Jy}$	36.3

Median stacking of the Primary Sample:

Median SED

Median SED-fitting results				
Zph	3.07 ± 0.36			
$\log_{10}(M_{\star}/\mathrm{M}_{\odot})$	11.00 ± 0.16			
$A_{V, ISM}$	4.9 ± 0.3			
$\log_{10}(L_{ m dust}/{ m L}_{\odot})$	12.91 ± 0.18			
$\log_{10}[SFR/(M_{\odot} yr^{-1})]$	2.93 ± 0.23			
f_{AGN}	0.23 ± 0.05			
$\log_{10}[L_{1.4\text{GHz,AGN}}/(\text{W Hz}^{-1})]$	24.48 ± 0.23			
$R_{ m AGN}$	[1.0]			
$\log_{10}(L_{ m IR}/L_{\odot})$	12.81 ± 0.04			
$\log_{10}[L_{1.4\mathrm{GHz,SF}}/(\mathrm{WHz^{-1}})]$	24.29 ± 0.36			
$log_{10}[SFR_{radio}/(M_{\odot}yr^{-1})]$	2.89 ± 0.36			
$q_{ m IR}$	2.06 ± 0.09			

Single objects analysis

Sample 1: 14 objects with at least a detection at λ>4.6μm Sample 2: 74 remaining objects with 3 photometric detections

Results

Results

Results

Higher stellar masses & SFRs with respect to previous Rs-NIR dark samples ($\Delta \log SFR \approx 0.3-0.4$ dex, Talia+2021, Gentile+2024a, Gentile+2025)

Compatible with a population where AGN and strong star-formation phases co-exist.

Summary and conclusions

- -By exploiting sensitive LOFAR 150 MHz observations of the EDF-N (~10 deg²) we selected a sample of 166 Rs-Euclid dark sources.
- -The analysis of the median stacked and individual sample of 88 sources revealed a population of high-z (z_{med} ~3), massive (M_{med} ~10¹¹ M_{\odot}) star-forming (SFR $_{med}$ ~850 M_{\odot} yr⁻¹) galaxies with a non-negligible AGN component.
- -Significant fraction of our sources compatible with RQ AGNs, better sampled by larger areas.
- -Large area + shallower coverage wrt previous selections \rightarrow selection of galaxies in which AGN and SF activity co-exists.

Next steps:

- -Improving photometry.
- -Waiting for Euclid DR1.
- -Expanding to other large fields (e.g. EDF-S).