

Magnetic fields inside and beyond galaxy clusters with LOFAR

LOFAR Family Meeting 2025

22 Sept 2025

Chiara Stuardi

INAF - Istituto di Radioastronomia (Italy)

LOFAR Surveys & Magnetism Key Science Projects

Vogelsberger+ 2014

Diffuse synchrotron sources provide evidences of magnetic fields on Mpc scales.

Vogelsberger+ 2014

Understand the origin of diffuse radio sources and physics of galaxy clusters

Vogelsberger+ 2014

Understand the origin of diffuse radio sources and physics of galaxy clusters

Understand magneto-genesis and its cosmological implications

Vogelsberger+ 2014

$$\boldsymbol{p_0} = p_0 e^{2i\chi_0}$$

$$\boldsymbol{p}_{\lambda} = p_0 e^{2i(\chi_0 - RM \lambda^2)}$$

Rotation $\propto \lambda^2$

Observed polarization

$$\boldsymbol{p}_{\lambda} = p_0 e^{2i(\chi_0 - RM \lambda^2)}$$

Rotation∝λ²

Observed polarization

$$RM \propto \int\limits_{source}^{observer} n_{THe} B_{LOS} dl_{LOS}$$

Rocation $\propto \lambda^2$ Depolarization $\propto \lambda^4$ [see also Arshakian+11]

Observed polarization

$$RM \propto \int_{source}^{observer} n_{THe} B_{LOS} dl_{LOS}$$

Magnetic fields in galaxy clusters outskirts

- From equipartition: B~0.1-1.7 μG at ~ R₂₀₀ [Botteon+22]
- Reproduced in cosmological simulations
 - turbulent acceleration
 - B amplification via dynamo B~0.1-0.5 μG at ~ R₅₀₀ [Beduzzi+24]

Magnetic fields in bridges

- Two possible origins for cosmic rays:
 - low Mach number shocks
 - → B~0.1 µG [Govoni+19]
 - turbulence
 - \rightarrow B~0.5-0.6 µG [Brunetti&Vazza2020]
- Polarized emission non-detected at 150 MHz $\sigma_{RM} > 0.1 \text{ rad/m}^2$ (in front of the bridge)

B > 0.46 nG with fluctuations on scales <140kpc [Balboni+2023]

superclusters

boundaries

superclusters

clusters

viral radii

supercluster

boundaries

in

superclusters

Significant contribution from filaments: $\sigma^2_{PM} = 2.5 \pm 0.5 \text{ rad}^2/\text{m}^4$

Adiabatic compression from B_{in} =0.1 nG

$$\sigma_{\rm th}^{2_{\rm RRM}} = 0.812^2 \left(\frac{\Lambda_c}{\rm pc}\right) \int \left(\frac{n_{\rm e}}{\rm cm}^{-3} \frac{B_{\parallel}}{\mu \rm G}\right)^2 \frac{{\rm d}l}{\rm pc},$$

RM scatter in different density bins Significant contribition from filaments: $\sigma_{RM}^2 = 2.5\pm0.5 \text{ rad}^2/\text{m}^4$

$$\rightarrow$$
 B = 19⁺⁵⁰₋₈ nG

Magnetic fields in filaments: LoTSS DR2 RM grid

- 2461 RM sources
- 79% with redshift
- Large scale patterns due to our Galaxy RRM=RM-RM_{Galactic}

Magnetic fields in filaments: LoTSS DR2 RM grid

- Filaments of the cosmic web favored as the origin of the RRM and depolarization trend with z
- B_f = 32±3 nG (no evolution of n_g and B)

Magnetic fields in filaments – LoTSS DR2 RM grid

- $B_f = B_{f,0} (1 + z)^{\alpha}$ $B_{f,0} = 11-15 \text{ nG} \pm 4 \text{ nG},$ $\alpha = 2.3-2.6 \pm 0.5$
- Strongly favors primordial origin

Looking forward: LoTSS DR3 RM grid

- x3 sky area
- ~5000 RMs
- preliminary catalogue available internally to survey and magnetism KSPs

Courtesy of S. O'Sullivan

Looking forward: LOFAR 2.0

The International LoTSS (ILoTSS, Shimwell, O'Sullivan+) proposing to image extragalactic sky at 0.3" to ~30 uJy (overlap with EUCLID)

- & finish LoTSS in Galactic plane
- more than x1.5 areal polarised source density

[ILoTSS proposal]

- increase polarised source density in intermediate density regimes
- disentangle astrophysical from primordial contribution to RRM(z)

- increase polarised source density in intermediate density regimes
- disentangle astrophysical from primordial contribution to RRM(z)

A. Berger's talk on ApPolLo

- increase polarised source density in intermediate density regimes
- disentangle astrophysical from primordial contribution to RRM(z)

- increase polarised source density in intermediate density regimes
- disentangle astrophysical from primordial contribution to RRM(z)

- increase polarised source density in intermediate density regimes
- disentangle astrophysical from primordial contribution to RRM(z)

Final remarks

- Fill the gap between filaments and clusters
- Obtain individual detection of bridges/filaments to understand
 - scaling between n_e and B outside R_{500}
 - magnetic field structure
 - → synergy with GHz-observations is essential

Thank you for your attention!