Searching for revived fossil plasma sources in galaxy clusters

Luca Bruno¹

Email: <u>luca.bruno@inaf.it</u>

¹Istituto Nazionale di Astrofisica – Istituto di Radioastronomia (INAF-IRA)

Diffuse radio sources in galaxy clusters: radio halos and relics

[Credits: Pearce et al.; Bill Saxton, NRAO/AUI/NSF; Chandra; Subaru; ESO]

	RH	RR
host state	disturbed	disturbed
location	centre	outskirts
morphology	roundish	elongated
LLS (Mpc)	~0.3-2	~ 0.3–2
α	~1-1.5	~1-1.5
origin	turbulence	shocks

[Reviews: Brunetti & Jones 14; van Weeren+ 19]

The *Planck* clusters in the LOFAR sky

Statistical study of mass-selected clusters to test theoretical models at low-v

[Botteon+ 22; Bruno+ 23; Zhang+ 23; Cassano+ 23; Cuciti+ 23; Jones+ 23]

What can we learn?

- → Energy transfer mechanisms
- → Origin of CR
- → Cosmic magnetism
- → Thermal/non-thermal interplay

Check the project website!

Revived fossil radio sources

	RP	GReET
host state	?	?
location	?	?
morphology	patchy/filamentary	elongated
LLS (kpc)	~100-500	~100-500
α	~ 1.5–3	~1.5-3
origin	shocks ?	turbulence ?

What can we learn?

- → Energy transfer mechanisms
- → Origin of CR
- → Cosmic magnetism
- → Thermal/non-thermal interplay

Not only RHs/RRs!

Fossil components from radio galaxies can be also revived by shocks and turbulence →

Radio phoenices and Gently Re-Energised Tails

The pilot sample from *Planck*/LoTSS-DR2

- > 309 clusters \rightarrow **92** without RR/RH in selected z- M_{500} ranges
- ightharpoonup Visual inspection: irregular/filamentary sources \rightarrow 7 targets
- > Follow-up → uGMRT at 300-500 MHz

AIM spectral study at high resolution (< 50 kpc) for classification

- \rightarrow uniform $\alpha \sim 2.3$
- > no obvious host
- sign of reacceleration along filaments

G071: Candidate RP

- $> \alpha \sim 1.3$, no gradients
- no obvious host
- > similar to RP in G071
- no sign of reacceleration

G113: Remnant radio galaxy

Summary and conclusions

- \Box Ultra-steep spectrum emission in all targets \rightarrow effective morphological selection of fossils
- Avoid simplistic conclusions → ultra-steep spectrum source ≠ revived source
- ☐ High-resolution radio images → high risk of misclassification

Results

- ☐ Confirming reacceleration via X-ray data analysis
- Additional radio follow-ups

What's next

submitted!

Resurging from the ashes: A spectral study of seven candidate revived radio fossils in nearby and low-mass galaxy clusters

L. Bruno¹, A. Botteon¹, D. Dallacasa^{2,1}, T. Venturi^{1,3}, M. Balboni^{2,4}, N. Biava⁵, M. Brienza¹, M. Brüggen⁶, G. Brunetti¹, F. de Gasperin¹, E. De Rubeis^{2,1}, G. Di Gennaro¹, F. Gastaldello⁴, A. Ignesti⁷, T. Pasini¹, K. Rajpurohit⁸, A. Shulevski^{9, 10, 11, 12}, K. S. L. Srikanth^{2, 1}, R. J. van Weeren¹³, X. Zhang¹⁴

Thanks for your attention

... Questions?

- Central NAT (twisting jets ?)
- \triangleright Various diffuse steep- α components
- Fossil electrons spread by NAT + reacceleration ?

G172: Uncertain origin

- Similar structures at low resolution
- Different internal structures at high resolution
- > α~1.5

G165: Single/double remnant?

PSZ2 Name	Abell Name	RA_{J2000} (deg)	DEC _{J2000} (deg)	z	$M_{500} \ (10^{14} \ M_{\odot})$	R ₅₀₀ (kpc)	Scale (kpc arcsec ⁻¹)
G071.63+29.78	<u> </u>	266.8257	45.1899	0.157	4.13 ± 0.29	1080 ± 25	2.715
G088.53+41.18	A2208	247.3887	58.5338	0.133	2.56 ± 0.34	929 ± 42	2.363
G113.29-29.69	A7	2.9363	32.4325	0.107	3.71 ± 0.27	1060 ± 25	1.958
G137.74-27.08	A272	28.7835	33.9443	0.087	2.83 ± 0.28	975 ± 32	1.629
G155.80+70.40		178.4833	42.8600	0.333	4.42 ± 0.56	1036 ± 44	4.781
G165.68+44.01		140.5859	51.8876	0.21	3.76 ± 0.50	1027 ± 46	3.427
G172.74+65.30	A1190	167.9029	40.8574	0.079	2.45 ± 0.21	932 ± 27	1.493

Host	Reg.	Class.	$D_{\rm c}$ (kpc)	LLS (kpc)	$A (10^3 \text{ kpc}^2)$	S ₁₄₄ (mJy)	S ₄₀₀ (mJy)	α	P_{150} $(10^{24} \text{ W Hz}^{-1})$
G071	-	RP(c,*)	920+	580	78	197.8 ± 19.8	19.5 ± 1.2	2.3 ± 0.1	14.6 ± 1.5
G088	A, B	$HT^{(*)}$	290+	275	29	431.1 ± 43.1	74.7 ± 4.5	1.7 ± 0.1	20.6 ± 2.1
G088	C, D	GReET(c,*)	155+	315	28	123.1 ± 12.3	6.1 ± 0.4	2.9 ± 0.1	6.5 ± 0.6
G088	E	Uncertain	390+	215	21	432.1 ± 43.2	121.6 ± 7.3	1.2 ± 0.1	19.8 ± 2.0
G088	S2	Uncertain	535+	210	14	24.6 ± 2.5	2.4 ± 0.2	2.3 ± 0.1	1.3 ± 0.2
G113	-	Remnant	580+	210	21	48.4 ± 5.0	13.1 ± 0.8	1.3 ± 0.1	1.4 ± 0.1
G137	A	Uncertain(*)	240+	130	6	342.0 ± 34.2	86.0 ± 5.2	1.4 ± 0.1	6.3 ± 0.6
G137	B, Fil.	WAT(*)	300+	280	17	403.7 ± 40.4	99.7 ± 6.0	1.4 ± 0.1	7.4 ± 0.7
G155	A	HT	435 ^x	285	41	581.5 ± 58.2	254.0 ± 15.2	0.8 ± 0.1	195.2 ± 20.3
G155	В	Remnant	520 ^x	430	53	85.8 ± 8.6	5.6 ± 0.4	2.7 ± 0.1	46.0 ± 4.8
G165	A	Remnant	750 ^x	240	23	56.7 ± 5.7	12.1 ± 0.7	1.5 ± 0.1	7.6 ± 0.8
G165	В	Remnant	720 ^x	260	25	61.6 ± 6.2	9.5 ± 0.6	1.8 ± 0.1	8.6 ± 0.8
G172	A	NAT	40+	90	7	4104.4 ± 410.4	2020.9 ± 121.3	0.7 ± 0.1	60.0 ± 6.0
G172	B, C, D	Uncertain	40+	220	21	2116.1 ± 211.6	460.1 ± 27.6	1.5 ± 0.1	32.8 ± 3.2

Notes. Cols. 1-2: host cluster and considered region of the radio source. Col. 3: (tentative) classification; 'c' stands for 'candidate' and '*' indicates evidence of re-energising based on radio data only (not considering X-rays). Cols. 4-6: projected distance of target from the *Planck* centre (x) or X-ray peak ($^{+}$), largest linear size, and area. Cols. 7-10: flux densities measured within regions encompassing the 3σ level of the 144 MHz image, integrated spectral index, and k-corrected radio power at 150 MHz.