Searching for revived fossil plasma sources in galaxy clusters Luca Bruno¹ Email: <u>luca.bruno@inaf.it</u> ¹Istituto Nazionale di Astrofisica – Istituto di Radioastronomia (INAF-IRA) ## Diffuse radio sources in galaxy clusters: radio halos and relics [Credits: Pearce et al.; Bill Saxton, NRAO/AUI/NSF; Chandra; Subaru; ESO] | | RH | RR | |------------|------------|----------------| | host state | disturbed | disturbed | | location | centre | outskirts | | morphology | roundish | elongated | | LLS (Mpc) | ~0.3-2 | ~ 0.3–2 | | α | ~1-1.5 | ~1-1.5 | | origin | turbulence | shocks | [Reviews: Brunetti & Jones 14; van Weeren+ 19] ### The *Planck* clusters in the LOFAR sky Statistical study of mass-selected clusters to test theoretical models at low-v [Botteon+ 22; Bruno+ 23; Zhang+ 23; Cassano+ 23; Cuciti+ 23; Jones+ 23] #### What can we learn? - → Energy transfer mechanisms - → Origin of CR - → Cosmic magnetism - → Thermal/non-thermal interplay Check the project website! #### Revived fossil radio sources | | RP | GReET | |------------|--------------------|--------------| | host state | ? | ? | | location | ? | ? | | morphology | patchy/filamentary | elongated | | LLS (kpc) | ~100-500 | ~100-500 | | α | ~ 1.5–3 | ~1.5-3 | | origin | shocks ? | turbulence ? | #### What can we learn? - → Energy transfer mechanisms - → Origin of CR - → Cosmic magnetism - → Thermal/non-thermal interplay Not only RHs/RRs! Fossil components from radio galaxies can be also revived by shocks and turbulence → Radio phoenices and Gently Re-Energised Tails ### The pilot sample from *Planck*/LoTSS-DR2 - > 309 clusters \rightarrow **92** without RR/RH in selected z- M_{500} ranges - ightharpoonup Visual inspection: irregular/filamentary sources \rightarrow 7 targets - > Follow-up → uGMRT at 300-500 MHz ## AIM spectral study at high resolution (< 50 kpc) for classification - \rightarrow uniform $\alpha \sim 2.3$ - > no obvious host - sign of reacceleration along filaments **G071**: Candidate RP - $> \alpha \sim 1.3$, no gradients - no obvious host - > similar to RP in G071 - no sign of reacceleration **G113**: Remnant radio galaxy #### **Summary and conclusions** - \Box Ultra-steep spectrum emission in all targets \rightarrow effective morphological selection of fossils - Avoid simplistic conclusions → ultra-steep spectrum source ≠ revived source - ☐ High-resolution radio images → high risk of misclassification Results - ☐ Confirming reacceleration via X-ray data analysis - Additional radio follow-ups What's next submitted! Resurging from the ashes: A spectral study of seven candidate revived radio fossils in nearby and low-mass galaxy clusters L. Bruno¹, A. Botteon¹, D. Dallacasa^{2,1}, T. Venturi^{1,3}, M. Balboni^{2,4}, N. Biava⁵, M. Brienza¹, M. Brüggen⁶, G. Brunetti¹, F. de Gasperin¹, E. De Rubeis^{2,1}, G. Di Gennaro¹, F. Gastaldello⁴, A. Ignesti⁷, T. Pasini¹, K. Rajpurohit⁸, A. Shulevski^{9, 10, 11, 12}, K. S. L. Srikanth^{2, 1}, R. J. van Weeren¹³, X. Zhang¹⁴ Thanks for your attention ... Questions? - Central NAT (twisting jets ?) - \triangleright Various diffuse steep- α components - Fossil electrons spread by NAT + reacceleration ? **G172**: Uncertain origin - Similar structures at low resolution - Different internal structures at high resolution - > α~1.5 **G165**: Single/double remnant? | PSZ2 Name | Abell Name | RA_{J2000} (deg) | DEC _{J2000} (deg) | z | $M_{500} \ (10^{14} \ M_{\odot})$ | R ₅₀₀ (kpc) | Scale (kpc arcsec ⁻¹) | |---------------|------------|--------------------|----------------------------|-------|-----------------------------------|------------------------|-----------------------------------| | G071.63+29.78 | <u> </u> | 266.8257 | 45.1899 | 0.157 | 4.13 ± 0.29 | 1080 ± 25 | 2.715 | | G088.53+41.18 | A2208 | 247.3887 | 58.5338 | 0.133 | 2.56 ± 0.34 | 929 ± 42 | 2.363 | | G113.29-29.69 | A7 | 2.9363 | 32.4325 | 0.107 | 3.71 ± 0.27 | 1060 ± 25 | 1.958 | | G137.74-27.08 | A272 | 28.7835 | 33.9443 | 0.087 | 2.83 ± 0.28 | 975 ± 32 | 1.629 | | G155.80+70.40 | | 178.4833 | 42.8600 | 0.333 | 4.42 ± 0.56 | 1036 ± 44 | 4.781 | | G165.68+44.01 | | 140.5859 | 51.8876 | 0.21 | 3.76 ± 0.50 | 1027 ± 46 | 3.427 | | G172.74+65.30 | A1190 | 167.9029 | 40.8574 | 0.079 | 2.45 ± 0.21 | 932 ± 27 | 1.493 | | Host | Reg. | Class. | $D_{\rm c}$ (kpc) | LLS (kpc) | $A (10^3 \text{ kpc}^2)$ | S ₁₄₄ (mJy) | S ₄₀₀ (mJy) | α | P_{150} $(10^{24} \text{ W Hz}^{-1})$ | |------|---------|--------------|-------------------|-----------|--------------------------|------------------------|------------------------|---------------|---| | G071 | - | RP(c,*) | 920+ | 580 | 78 | 197.8 ± 19.8 | 19.5 ± 1.2 | 2.3 ± 0.1 | 14.6 ± 1.5 | | G088 | A, B | $HT^{(*)}$ | 290+ | 275 | 29 | 431.1 ± 43.1 | 74.7 ± 4.5 | 1.7 ± 0.1 | 20.6 ± 2.1 | | G088 | C, D | GReET(c,*) | 155+ | 315 | 28 | 123.1 ± 12.3 | 6.1 ± 0.4 | 2.9 ± 0.1 | 6.5 ± 0.6 | | G088 | E | Uncertain | 390+ | 215 | 21 | 432.1 ± 43.2 | 121.6 ± 7.3 | 1.2 ± 0.1 | 19.8 ± 2.0 | | G088 | S2 | Uncertain | 535+ | 210 | 14 | 24.6 ± 2.5 | 2.4 ± 0.2 | 2.3 ± 0.1 | 1.3 ± 0.2 | | G113 | - | Remnant | 580+ | 210 | 21 | 48.4 ± 5.0 | 13.1 ± 0.8 | 1.3 ± 0.1 | 1.4 ± 0.1 | | G137 | A | Uncertain(*) | 240+ | 130 | 6 | 342.0 ± 34.2 | 86.0 ± 5.2 | 1.4 ± 0.1 | 6.3 ± 0.6 | | G137 | B, Fil. | WAT(*) | 300+ | 280 | 17 | 403.7 ± 40.4 | 99.7 ± 6.0 | 1.4 ± 0.1 | 7.4 ± 0.7 | | G155 | A | HT | 435 ^x | 285 | 41 | 581.5 ± 58.2 | 254.0 ± 15.2 | 0.8 ± 0.1 | 195.2 ± 20.3 | | G155 | В | Remnant | 520 ^x | 430 | 53 | 85.8 ± 8.6 | 5.6 ± 0.4 | 2.7 ± 0.1 | 46.0 ± 4.8 | | G165 | A | Remnant | 750 ^x | 240 | 23 | 56.7 ± 5.7 | 12.1 ± 0.7 | 1.5 ± 0.1 | 7.6 ± 0.8 | | G165 | В | Remnant | 720 ^x | 260 | 25 | 61.6 ± 6.2 | 9.5 ± 0.6 | 1.8 ± 0.1 | 8.6 ± 0.8 | | G172 | A | NAT | 40+ | 90 | 7 | 4104.4 ± 410.4 | 2020.9 ± 121.3 | 0.7 ± 0.1 | 60.0 ± 6.0 | | G172 | B, C, D | Uncertain | 40+ | 220 | 21 | 2116.1 ± 211.6 | 460.1 ± 27.6 | 1.5 ± 0.1 | 32.8 ± 3.2 | **Notes**. Cols. 1-2: host cluster and considered region of the radio source. Col. 3: (tentative) classification; 'c' stands for 'candidate' and '*' indicates evidence of re-energising based on radio data only (not considering X-rays). Cols. 4-6: projected distance of target from the *Planck* centre (x) or X-ray peak ($^{+}$), largest linear size, and area. Cols. 7-10: flux densities measured within regions encompassing the 3σ level of the 144 MHz image, integrated spectral index, and k-corrected radio power at 150 MHz.